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The pure spinor formalism for the superstring has recently been used to compute massless four-point
two-loop amplitudes in a manifestly super-Poincaré covariant manner. In this Letter, we show that when
all four external states are Neveu-Schwarz states, the two-loop amplitude coincides with the Ramond-
Neveu-Schwarz result.
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Introduction.—String theory is currently the most prom-
ising model for unification of the forces. In bosonic string
theory, the prescription for computing perturbative scatter-
ing amplitudes is well developed and has been used to
compute amplitudes with arbitrary numbers of loops.
Unfortunately, these multiloop amplitudes suffer from un-
physical divergences which make bosonic string theory
inconsistent. In superstring theory, spacetime supersym-
metry helps in cancelling these divergences. However,
because spacetime supersymmetry is not manifest in the
Ramond-Neveu-Schwarz (RNS) formalism [1]. for the
superstring, it is difficult to explicitly prove the cancella-
tion of divergences using this formalism. Although the
Green-Schwarz (GS) formalism [2]. for the superstring is
manifestly spacetime supersymmetric, its nonquadratic
action makes it difficult to quantize except in light-cone
gauge.

Five years ago, a new formalism for the superstring with
manifest spacetime supersymmetry was introduced which
uses pure spinors as world sheet ghosts [3]. Since the world
sheet action is quadratic, it is straightforward to compute
manifestly super-Poincaré covariant N-point tree ampli-
tudes using this formalism and, last year, it was shown how
to compute multiloop amplitudes [4]. In addition to prov-
ing various vanishing theorems related to perturbative
finiteness and S duality [4], super-Poincaré covariant mass-
less four-point one-loop [4] and two-loop [5] amplitudes
were explicitly computed.
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To check consistency of the new formalism, it is useful
to compare these amplitudes with those amplitudes that
have also been computed using the RNS and GS formal-
isms. For massless N-point tree amplitudes involving four
or fewer Ramond states and an arbitrary number of Neveu-
Schwarz states, the equivalence with the RNS computation
was proven in [6]. And for massless four-point one-loop
amplitudes, the equivalence with the RNS and GS compu-
tations was proven in [7].

For massless four-point two-loop amplitudes, computa-
tions have only been performed using the RNS formalism
for the case when all four external states are Neveu-
Schwarz [8,9]. Because of the need to sum over spin
structures and include surface term contributions, these
RNS computations are extremely complicated. On the
other hand, computation of massless four-point two-loop
amplitudes using the super-Poincaré covariant formalism
is easy since the fermionic world sheet variables only
contribute through their zero modes [5]. The final result
is quite simple and is expressed as a superspace integral in
terms of the ten-dimensional super-Yang-Mills and super-
gravity superfields.

In this Letter, the integral over superspace will be ex-
plicitly performed for the case when all external states are
in the Neveu-Schwarz sector. The amplitude will then be
shown to coincide with the RNS result of [8,9].

Comparison of two-loop amplitudes.—As derived in [5]
using the methods of [4], the four-point two-loop Type IIB
amplitude computed using the pure spinor formalism is
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where �CD is the genus-two period matrix for C;D � 1
to 2, ��y; z� � �CD!C�y�!D�z�, !C are the two holomor-
phic one-forms, G�y; z� is the scalar Green’s function, jj2
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and �T�1�
���
�1...�11 is a Lorentz-invariant tensor which is

antisymmetric in ��1 . . .�11	 and symmetric and
�-matrix traceless in �����. Up to an overall normaliza-
2-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.011602


PRL 96, 011602 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JANUARY 2006
tion constant,

�T�1�
���
�1...�11 � ��1...�16

��m���12��n�	�13��p�
�14��mnp�
�15�16����� �

�
	�

��

 �

1

40
����q ���� �

q
	
�: (3)

Comparing (1) with the RNS result of [8,9] and ignoring the Ramond component fields in the superfieldsWR� and F R
mn,

one finds that the results coincide if
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where t8F
1F2F3F4 is the well-known kinematic factor

appearing also in four-point tree-level and one-loop com-
putations, FRmn is the ordinary linearized Yang-Mills field
strength of the Rth external state, and

Y � �k1 � k2� � �k3 � k4���z1; z2���z3; z4�

� �k1 � k3� � �k2 � k4���z1; z3���z2; z4�

� �k1 � k4� � �k2 � k3���z1; z4���z2; z3�: (5)
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To evaluate the right-hand side of (4), it is convenient to
use the notation
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Since we only want to consider the Neveu-Schwarz sector and Fmn is bosonic while W� is fermionic, the only
contribution to this computation comes from terms in which an even number ofD’s act upon each F and an odd number of
D’s act on W. One therefore has
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where the spinor indices on the five D’s are antisymmetrized and the combinatoric factors in (8) come from the different
ways of splitting up these five indices.

Using the relations D�F
mn � 2k�m�n	��W
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Plugging (9) into (8) and replacing F R
mn with its � � 0 component FRmn, one obtains that the right-hand side of (4) is
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To check if (10) reproduces the desired t8F1F2F3F4 contractions, one needs to evaluate
h���mnpqr�����s�tu�����fgh�����jkl��i � h���mnpqr�����stu�����fgh�����jkl��i

� 2h���mnpqr���s�t���u	�����fgh�����jkl��i: (11)

Fortunately, the properties of pure spinors and the symmetries of (11) make this a straightforward task. Since (11) contains
14 vector indices and is Lorentz invariant, it can be expressed in terms of linear combinations of products of seven �pq
tensors, or products of one ten-dimensional � tensor and two �pq tensors. However, since the four-point amplitude only
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involves three independent momenta and four polarizations, the ten-dimensional � tensor cannot contribute to the four-
point amplitude. One can easily check that the only possible linear combination of �pq tensors which has the appropriate
symmetries is
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where A, B, X, and Z are constants. The coefficients A and
B are determined from the pure spinor conditions
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to be A � 1 and B � 1
2 . And the constants X and Z are

determined to be X � 3Z � � 12
35 from the normalization

condition that

h���m�����n�����p�����mnp��i � 1:

Note that (12) and (13) imply that
h���mnpqr�����stu�����fgh�����jkl��i�hj � h���mnpqr�����u�����fgh�����jkl��i�hj � 0; (16)

so there is no contribution from terms in (8) with a D5W factor or D4F factor.
Using the above formulas, it is straightforward to evaluate (10) with the help of the mathematica package GAMMA [10]

for performing the tedious sum over the antisymmetrized deltas. Writing FRmn � kRme
R
n � k

R
ne

R
m, where eRm is the polariza-

tion tensor satisfying �mnkRmeRn � 0, and summing over all permutations of the (1234) indices, one obtains an expression
containing approximately 250 terms. Using momentum conservation and expressing contractions of momenta in terms of
the Mandelstam variables s � �2�k1 � k2�, t � �2�k2 � k3�, and u � �2�k1 � k3�, one obtains that the right-hand side of
(4) is proportional to ��z1; z2���z3; z4� multiplied by
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plus a second term multiplying ��z1; z3���z2; z4�, which is obtained from (17) by switching 2 with 3 and s with u, plus a
third term multiplying ��z1; z4���z3; z2�, which is obtained from (17) by switching 2 with 4 and s with t. Expanding
t8F

1F2F3F4 in terms of polarizations and momenta, one can check that each of these three terms is proportional to
�t8F

1F2F3F4�, and that the sum of the terms is equal to �t8F1F2F3F4� multiplied by

c��t� u���z1; z2���z3; z4� � �t� s���z1; z3���z2; z4� � �s� u���z1; z4���z3; z2�	;
where c is a constant factor.
So it has been proven that the four-point two-loop

amplitude computed in [5] using the pure spinor formalism
coincides with the RNS result of [8,9]. Since the compu-
tation in [5] is much simpler than the RNS computations of
[8,9], the generalization to higher-point and higher-loop
amplitudes are also expected to be simpler using the pure
spinor formalism, making this formalism more convenient
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for analyzing the properties of superstring multiloop
amplitudes.
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