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We investigate the possibility of realizing effective quantum gates between two atoms in distant cavities
coupled by an optical fiber. We show that highly reliable swap and entangling gates are achievable. We
exactly study the stability of these gates in the presence of imperfections in coupling strengths and
interaction times and prove them to be robust. Moreover, we analyze the effect of spontaneous emission
and losses and show that such gates are very promising in view of the high level of coherent control
currently achievable in optical cavities.

DOI: 10.1103/PhysRevLett.96.010503 PACS numbers: 03.67.Lx, 03.67.Mn, 42.81.Qb
The study of the possibilities allowed by coherent evo-
lutions of quantum systems is central to quantum informa-
tion science. Most notably, exploiting suitable coherent
dynamics to implement deterministic quantum gates be-
tween separate subsystems is a basic aim for quantum
computation. Several proposals have been suggested to
engineer entanglement or quantum communication be-
tween atoms trapped in distant optical cavities, either
through direct linking of the cavities [1–4], or through
detection of leaking photons [5,6]. The realization of
quantum gates between distant qubits in quantum optical
settings has also been recently envisaged [7,8]. Such pro-
posals are very promising and highly inventive. However,
they are either probabilistic or relying on accurately tai-
lored sequences of pulses (thereby requiring a considerable
degree of control). In this Letter, an alternative to such
schemes is proposed, with a particular focus on the imple-
mentation of distributed quantum computation. To this
aim, we investigate the possibility of realizing determinis-
tic gates between two-level atoms in separate optical cav-
ities, through a coherent resonant coupling mediated by an
optical fiber. The only control required would be the syn-
chronized switching on and off of the atom-field interac-
tions in the distant cavities, achievable through simple
control pulses. The study of such a system (which would
constitute the basic cell of scalable optical networks) is
crucial in view of the outstanding improvements currently
achieved in the control of single atoms trapped in optical
cavities [9] and of the recent realization of microfabricated
cavity-fiber systems [10].

In the considered system the interaction between the
qubits is mediated by the bosonic light field. It has been
shown that, in principle, an exact deterministic gate may be
realized if the interaction between two qubits is mediated
by another two-level system through XY nearest neighbor
interactions [11]. If the central system is a bosonic field,
though, interacting with the two qubits through a rotating
wave Hamiltonian, a perfect gate is not possible, as the
Rabi frequencies in the two- and single- excitation sub-
spaces are no longer commensurate and the mediating field
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does not exactly decouple from the qubits at short enough
times. However, as we will show, times do exist for which
the qubits are decoupled from the field at a high degree of
accuracy. The resulting effective dynamics of the two
qubits can then be described in terms of quantum opera-
tions which approximate unitary gates with a high fidelity.
The discrepancy between such approximate gates and the
desired unitary ones would be negligible with respect to the
errors involved by an experimental implementation of the
scheme.

We consider two two-level atoms in distant optical
cavities, interacting with the local cavity fields through
dipole interactions in rotating wave approximation. The
two cavities will be henceforth labeled by the indices 1 and
2. We will allow for a detuning � of the transition of atom 2
from the resonance frequency ! of the cavities (whereas
atom 1 will be assumed to be at resonance). The cavities
are connected by an optical fiber, whose coupling to the
modes of the cavities may be modeled by the interaction
Hamiltonian HIf �

P
1
j�1 �j�bj�a

y
1 � ��1�jei’ay2 �� H:c:�

[2], where bi are the modes of the fiber, a1 and a2 are the
cavities’ modes, �i is the coupling strength with the fiber
mode i, and the phase ’ is due to the propagation of the
field through the fiber of length l: ’ � 2�!l=c [12].

Now, let �� be the decay rate of the cavities’ fields into a
continuum of fiber modes. Taking into account a finite
length l of the fiber implies a quantization of the modes
of the fiber with frequency spacing given by 2�c=l. One
has then that the number of modes which would signifi-
cantly interact with the cavities’ modes is of the order of
n � �l ���=�2�c� [2]. We will focus here on the case n & 1,
for which essentially only one (resonant) mode of the fiber
will interact with the cavity modes (‘‘short fiber limit’’)
[13]. Notice that such a regime applies in most realistic
experimental situations: for instance, l & 1 m and �� ’
1 GHz (natural units are adopted with @ � 1) are in the
proper range. We recall that the coupling � to the modes of
a fiber of finite length can be estimated as � ’

����������������
4� ��c=l

p
.

Let us also notice that the coupling strength � can be
3-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.010503


3.1 3.2 3.3 3.4 3.5
gt

0.93

0.94

0.95

0.96

0.97

0.98

0.99

F

FIG. 1 (color online). Fidelities of an emulated swap gate as a
function of time. The gate is obtained for jg1j � jg2j � g and
� � 0; the diamonds refer to �=g � 1:1, the squares refer to
�=g � 1:2, while the triangles refer to �=g � 1. All the quan-
tities plotted are dimensionless.
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increased by decreasing the reflectivity of the cavity mirror
connected to the fiber. In the specified limit, the
Hamiltonian HIf reduces to Hf

Hf � ��b�ay1 � e
i’ay2 � � H:c:�; (1)

where b is the resonant mode of the fiber. The total
Hamiltonian of the composite system can be written, in a
frame rotating at frequency !, as

H � �j12ih12j �
X2

j�1

�gjj0jih1jja
y
j � H:c:� �Hf; (2)

where j1ji and j0ji are the excited and ground states of
atom j, gj is the dipole coupling between atom and field in
cavity j (generally complex, as local coupling phases,
depending on the positions of the atoms in the cavities,
might be present), and � is the detuning of the transition of
atom 2. The addressed system is thus equivalent to two
qubits connected by a chain of three harmonic oscillators.
For ease of notation, let us also define g � jg1j, � �
jg2j � jg1j and ��j � j0jih1jj for j � 1; 2.

Before proceeding, let us remark on an interesting fea-
ture of the Hamiltonian H, which unveils some significant
insight about the dynamics we intend to study. Let us
consider the normal modes c and c	 of the three interact-
ing bosonic modes. One has c � �a1 � e

�i’a2�=
���
2
p

, with
frequency !, and c	 � �a1 � e�i’a2 	

���
2
p
b�=2, with fre-

quencies !	
���
2
p
�. The three normal modes are not

coupled with each other but interact with the atoms be-
cause of the contributions of the cavity fields. However, for
�
 jgjj, the interaction of the atoms with the nonresonant
modes is highly suppressed (it is essentially limited to the
second order in the Dyson series) and the system reduces to
two qubits resonantly coupled through a single harmonic
oscillator. Remarkably, as the dominant interacting mode c
has no contribution from the fiber mode b, the system gets
in this instance insensitive to fiber losses. On the other
hand, note that fulfilling the condition �
 jgjj might
require weak couplings, thus implying larger operating
times.

Let us now discuss the computational possibilities al-
lowed by the coherent evolution described by the
Hamiltonian (2). To this aim, we will be interested in the
reduced dynamics of the two distant atoms. We will as-
sume that the system can be ‘‘initialized’’ bringing all the
field modes in the vacuum state and allowing for any initial
state of the qubits. The Hamiltonian H clearly conserves
the number of global excitations and, for our aims, one can
restrict to the zero-, single-, and two-excitation subspaces.
The quantum operation describing the effective dynamics
of the atoms can thus be exactly worked out determining its
Kraus operators for any values of �, gj, and �. Denoting by
jijki the state of the field given by the number state i in the
mode of cavity 1, k in the mode of cavity 2, and j in the
fiber mode, one has Eijk�t� � hijkj exp��iHt�j000i for
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i; j; k � 0; 1; 2 and the state of the atoms %�t� is given by
%�t� �

P2
i;j;k�0 Eijk�t�%�0�E

y
ijk�t�. In particular, we are in-

terested in singling out ‘‘decoupling times’’ at which the
state of the atoms will be highly decoupled from the light
field so that their evolution will be approximately unitary.
At such times the field has a very high probability of being
in the vacuum state in both the single- and two-excitation
subspaces (the global vacuum is a trivial eigenvector of
H). This condition is fulfilled when the Kraus operators
Eijk ’ 0 for i; j; k � 0, so that the Kraus operator E000

approximates a unitary evolution. More precisely, the fi-
delity of a Kraus operation fEijkg emulating a unitary gate
U can be properly estimated as follows. Suppose a pure
two-qubit state j i enters the operation as input: a measure
of the reliability of the gate is given by the overlap

f�j i� � h jUy
� X2

i;j;k�0

Eijkj ih jE
y
ijk

�
Uj i:

The fidelity F of the gate may then be obtained by averag-
ing over all pure input states: F � hf�j i�ij i.

Setting � � 0, � � 0, and g ’ � yields a highly reliable
swap gate at the decoupling time t ’ �=g. The fidelity of
the proposed swap operation is shown in Fig. 1. As appar-
ent, such a fidelity can exceed the value 0.99 and is re-
markably stable with respect to possible imperfections in
the coupling strengths and in the temporal resolution
needed to switch off the interaction once the desired evo-
lution is achieved. Let us remark that the values g ’ � ’
1 GHz (at hand with present technology in optical cavities)
would grant an operating time � ’ 1 Ns. We also report
that, after a time t ’ 3:4=g, a swap gate with fidelity F ’
0:98 can be obtained for � ’ 100g (and � � � � 0), i.e.,
in the range of parameters for which the system gets
insensitive to fiber losses. This agreeable advantage is
thus achieved by allowing a longer operating time (due
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to the condition on g) and a slightly lower (but still almost
perfect) fidelity.

Moreover, this model allows for a reliable emulation of
an entangling gate. To fix ideas, we focus on a ‘‘controlled-
phase’’ (CPHASE) gate between the two qubits, described
by the unitary matrix U# in the computational basis:U# �
Diag�1; 1; 1; ei#�. This gate is equivalent, up to local uni-
taries, to the gates Diag�1; ei#1 ; ei#2 ; ei#�#1�#2� for any #1,
#2 2 �0; 2��, since the phases #1 and #2 can be canceled
out by local phase gates. We will thus henceforth refer to
all such gates as ‘‘CPHASE’’ gates. The entangling power of
such gates increases as the phase # increases between 0
and � (for which a controlled-Z gate is achieved). Let us
also recall that any of these entangling gates, together with
local unitary operations, make up a universal set of gates
(as any two-mode gate can be recovered as a proper
combination of the entangling gate and of local gates
[14]). The symmetry of the Hamiltonian (crucial in realiz-
ing a swap gate), must be broken here because it prevents a
phase # from appearing at decoupling times. In point of
fact, if the transition of atom 2 is detuned (e.g., by Stark or
Zeeman effect), a phase does arise, thus allowing for an
effective entangling gate. Reliable decouplings allowing us
to emulate such a gate are achieved for �
 jgjj, for which
the fiber is ‘‘bypassed’’ and fiber losses do not affect the
performance of the gate. For � ’ 100g ’ 200� ’ 10� a
sequence of CPHASE gates—separated by a period of about
4:4g�1—with increasing # (ranging from # ’ 0:15� to
# ’ 0:93�) is emulated. The most entangling CPHASE gate
(U0:93�) is achieved after six ‘‘Rabi-like’’ oscillations in
the two-excitation subspace. The fidelity F of the emulated
gate exceeds the value 0.99. Its stability is demonstrated in
Fig. 2. The operating time of the gates would range, for � ’
10 GHz, from 3 to 0:3 �s, according to the desired entan-
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FIG. 2 (color online). Fidelities of an emulated CPHASE gate
(U0:15�) as a function of time. The diamonds refer to �=� � 10,
jg1j=� � 0:1, and jg2j=� � 0:15; the squares and the triangles
refer, respectively, to a relative variation of �5% and �5% in
jg1j, jg2j, and �. The fidelities of the successive (more entan-
gling) CPHASE gates are similar. All the quantities plotted are
dimensionless.
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gling power. Figure 3 shows the entanglement of formation
between the two atoms generated for an initial state �j0i �
j1i� � �j0i � j1i�=2 (which gets maximally entangled if
processed by a controlled-Z gate) with several choices of
parameters. As apparent, a speedup in the creation of
entanglement is achieved by increasing the relative differ-
ence �=g. However, too large differences (�=g * 0:5)
affect the fidelity and stability of the emulated gate and
thus, while advantageous for building up entanglement, are
not convenient to perform actual computation.

We now take into account dissipation due to spontane-
ous emission of the atoms and to cavity and fiber losses.
The global system is then governed, in the Schrödinger
picture, by the following master equation

_%��i�H;%��
�
2

X2

j�1

L�aj�%�
�
2

X2

j�1

L���j �%�
	
2
L�b�%;

(3)

where the superoperator L�ô� is defined as L�ô� �
2ô%ôy � ôyô%� %ôyô for operator ô and �, and � and
	 stand, respectively, for the spontaneous emission rate
and for the cavity and fiber decay rates (assumed for
simplicity to be equal in the two cavities). The thermal
contributions of the bath have been neglected, as is pos-
sible at optical frequencies. Considering decoherence an-
alytically for one excitation and numerically for two
excitations [by integrating Eq. (3)], the operator tomogra-
phy of the process encompassing decoherence has been
reconstructed in the cases interesting for emulating gates.

In the regime �
 jgjj the fidelities of the gates have
been consistently found to be essentially unaffected by
fiber losses. In general, moreover, the ‘‘direct’’ effect of
spontaneous emission proves to be more relevant than the
‘‘indirect’’ effect of cavity losses. For the swap gate with
� ’ 1:2g (with maximum fidelity F ’ 0:997 without dis-
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FIG. 3 (color online). Entanglement of formation in ebits as a
function of time (in units g�1) for � � 100g � 10� and � � g
(dashed line), � � 0:5g (solid line) and � � 0 (dotted line). At
the peaks, CPHASE gates are emulated.
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sipation), the maximum fidelity drops to F ’ 0:956 for
� � 10�2g, thus allowing for a still relatively reliable
gate, while a fidelity F ’ 0:989 is maintained for � � � �
	 � 10�3g. Lower decay rates leave the gate virtually
unaffected, while higher rates completely spoil it. Notice
that values permitting an effective swap would already be
at hand for rubidium atoms in integrated fiber-cavity sys-
tems (see data from Ref. [10], with length of the cavity L ’
100 �m). The case � � 100g � 200� � 10�, selected to
demonstrate the possibility of a CPHASE gate, proved to be
slightly more sensitive to spontaneous emission and cavity
losses. Let us focus on the first gate (after one Rabi-like
oscillation): for � � 10�2g, the fidelity of the gate falls to
F ’ 0:93 (in which case the fidelity of the optimal most
entangling gate, achieved after six oscillations, is com-
pletely spoiled), while for � � � � 10�3g (recall that
this regime is insensitive to fiber losses), the fidelity of
the first gate is still F ’ 0:97. Generally, decay rates as low
as 10�4g have a negligible effect on the performances of
the gates, but also decay rates of the order of 10�2g would
allow for remarkable experimental demonstrations of swap
and entangling gates. In view of the quality attained in the
fabrication of high-finesse optical cavities, the main tech-
nical issue left seems to be limiting the spontaneous emis-
sion rates. Hyperfine ground levels (with negligible
‘‘intrinsic’’ spontaneous emission rates) of effective two-
level lambda systems could thus be good candidates for the
implementation of such computational schemes. In fact, let
us consider a lambda system (refer to Ref. [2] for details),
where one transition is driven by a laser of strength h with
detuning d and the other is mediated by a mode of the field
with resonant coupling h (assumed for simplicity to be real
and equal to the laser strength). Let 
 stand for the sponta-
neous emission rate of the excited level, which will be
adiabatically eliminated under the condition d
 h. Let us
suppose to exploit such a two-level system for the proposed
scheme. In our previous notation, one would have [2] g ’
dh2=�d2 � 
2� and � ’ 
h2=�d2 � 
2�, with g=� ’ d=
: a
large enough detuning would thus allow to coherently
implement the scheme with these effective two-level
systems.

We have investigated the implementation of quantum
computation and entangling schemes for atoms trapped in
distant cavities coupled by an optical fiber. Imperfections
and dissipation have been considered showing that, in the
short fiber regime, reliable gates with promising operating
times could be at hand with present technology. Let us also
mention that, in the considered system, not only entangling
01050
and swap gates, but also perfect quantum state transfer is
possible. Besides, the proposed setup would also allow for
the unitary generation of cluster states between distributed
atoms or ions [8], and could thus find application not only
in gate-based but also in ‘‘one-way’’ quantum computa-
tion. More generally, our results strongly emphasize the
potentialities of quantum optical systems towards the real-
ization of effective quantum networking schemes.
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