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Violation of the Entropic Area Law for Fermions
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We investigate the scaling of the entanglement entropy in an infinite translational invariant fermionic
system of any spatial dimension. The states under consideration are ground states and excitations of tight-
binding Hamiltonians with arbitrary interactions. We show that the entropy of a finite region typically
scales with the area of the surface times a logarithmic correction. Thus, in contrast with analogous bosonic
systems, the entropic area law is violated for fermions. The relation between the entanglement entropy and
the structure of the Fermi surface is discussed, and it is proven that the presented scaling law holds
whenever the Fermi surface is finite. This is, in particular, true for all ground states of Hamiltonians with
finite range interactions.
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Entanglement is a phenomenon of common interest in
the fields of quantum information and condensed matter
theory. It is an essential resource for quantum informa-
tion processing and intimately connected with exciting
quantum phenomena like superconductivity, the fractional
quantum Hall effect, or quantum phase transitions. Crucial
to all these effects are quantum correlations, i.e., the en-
tanglement properties, of ground states. These have re-
cently attracted a lot of attention, leading to new insight
into quantum phase transitions and renormalization group
transformations [1] and triggering the development of new
powerful numerical algorithms [2].

A fundamental question in this field is concerned with
the scaling of the entropy—which is for pure states syn-
onymous with the entanglement. That is, given a ground
state of a translational invariant system, how does the
entropy of a subsystem grow with the size of the consid-
ered region? Originally, this question appeared first in the
context of black holes, where it is known that the
Bekenstein entropy [3] is proportional to the area of the
horizon, which led to the famous conjecture now known as
the holographic principle [4,5]. The renewed interest,
however, comes more from the investigation of spin sys-
tems and quantum phase transitions. Moreover, the scaling
of the entropy is of particular interest concerning the
choice of the right ansatz states in simulation algorithms.

In the past few years, especially, one-dimensional spin
chains have been studied extensively, and it is now be-
lieved that the entropy diverges logarithmically with the
size of a block if the system is critical and that it saturates
at a finite value otherwise [7]. For a number of models [8–
10], in particular, those related to conformal field theories
in (1� 1) dimensions [11,12], this could be shown analyti-
cally, revealing a remarkable connection between the en-
tropy growth and the universality class of the underlying
theory. At the same time the diverging number of relevant
degrees of freedom provides a simple understanding of the
failure of numerical methods for critical spin chains.

For several spatial dimensions a suggested entropic area
law [6] could recently be proven [13] for the case of a
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lattice of quantum harmonic oscillators (quasifree bosons),
where again the entropy grows asymptotically proportional
to the surface. On heuristic grounds this can be understood
from the fact that the system is noncritical: an energy gap
gives rise to a finite correlation length, which in turn
defines the scale on which modes inside the subsystem
are correlated with the exterior. Although a general area
law for gapped lattice systems has not been proven so far,
the case of quasifree bosons is often considered as para-
digmatic. In fact, recently developed simulation algorithms
based on ansatz states exhibiting the presumed entropy
scaling are highly promising [2].

The fact that in some 1D systems a vanishing energy gap
leading to a diverging correlation length results in the
logarithmically diverging entanglement entropy inevitably
raises the question about the behavior of gapless systems in
more than one dimension.

This Letter is devoted to the study of the entanglement
entropy in gapless fermionic systems of arbitrary spatial
dimensions. We establish a relation between the structure
of the Fermi sea and the scaling of the entropy and prove
that a finite nonzero Fermi surface implies that the entan-
glement grows proportional to the surface of the subsystem
times a logarithmic correction, i.e.,

S� Ld�1 logL; (1)

if the system under consideration is a d-dimensional cube
with edge length L. Thus, in contrast to analogous bosonic
systems the entropic area law is violated for fermions.

Before we start to prove this result, a brief discussion of
the notion of locality—necessary for the concept of en-
tanglement—is in order. In spin systems as well as in the
bosonic case of harmonic oscillators the tensor product
structure of the underlying Hilbert space naturally leads
to an unambiguous notion of locality. In the absence of
such a tensor product structure either in general quantum
field theory settings [14] or in the present case of fermions
[15], one has to identify commuting subalgebras of ob-
servables and assign them to different parties. In our case
the relevant algebra is the one spanned by the fermionic
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creation and annihilation operators cyj and cj satisfying the
usual anticommutation relations. We assign the modes with
j � 1; . . . ; n to one party A (the interior) and the other
modes j � n� 1; n� 2; . . . to the other party B (the ex-
terior). Then parity conservation or, even stronger, particle
conservation [16] leads to a superselection rule, which
implies that all physical operators acting on A commute
with those acting on B, leading to well-defined notions of
locality and entanglement.

Let us now introduce the prerequisites for the proof.
Consider a number preserving quadratic Hamiltonian

Ĥ �
X

�;�2Zd
T�;�c

y
�c�; T � Ty; (2)

describing fermions on a d-dimensional cubic lattice, so
that each component of the vector indices �;� corresponds
to one spatial dimension. Translation symmetry is reflected
by the fact that T is a Toeplitz operator; i.e., T�;� � T���
depends only on the distance between two lattice points.
The Hamiltonian (2) is diagonalized by a Fourier transform
leading to the dispersion relation

��k� �
X
�2Zd

T�e
�ik��; k 2 ���;�	d: (3)

All thermal and excited states of the Hamiltonian Ĥ are
fermionic Gaussian states [17], which are completely char-
acterized by their correlation matrix

��� � ��� � 2 tr��cy�c�	: (4)

The correlation matrix describes a pure state iff �2 � 1, so
that all eigenvalues of � are 
1, and the ground state
correlation matrix is given by � � T

jTj . Ground states for
different fermion densities are then obtained by adding a
chemical potential, i.e., replacing T by T ��1. If we
characterize the Fermi sea by the corresponding indicator
function 	�k� 2 f0; 1g, then the respective correlation ma-
trix is given by [18]

��� �
1

�2��d
Z �

��
dk1 . . .

Z �

��
dkd�1� 2	�k�	eik������:

(5)

Note that this characterizes not only ground states but pure
Gaussian states in their most general form (as long as they
obey particle conservation and translation symmetry).

The state of a subsystem, e.g., a cube with edge length L,
is described by the corresponding Ld � Ld submatrix of �,
which we denote by ~�. This subsystem can be decomposed
into normal modes by a canonical transformation from
U�Ld� such that the state of each normal mode has a
Fock space representation of the form

1� 
j
2
j1ih1j �

1� 
j
2
j0ih0j; (6)

where the 
j are the eigenvalues of ~�. The entropy of the
subsystem can then be expressed as
01040
S�~�� �
XLd
j�1

h�
j�; (7)

h�x� � �
1� x

2
log

1� x
2
�

1� x
2

log
1� x

2
: (8)

Since a direct computation of S�~�� via the diagonalization
of ~� is yet highly nontrivial in the simplest one-
dimensional case with nearest neighbor interaction [9],
one relies in general on finding good bounds on the en-
tropy. We use quadratic bounds on h�x� of the form f�x� �
a�1� x2� � b [19]. The best lower bound is given by a �
1, b � 0 leading to

S�~�� � tr�1� ~�2	: (9)

The set of tight quadratic upper bounds can be parame-
trized by the point x0 2 �0; 1� for which f�x0� � h�x0�
become tangent [20]. We couple this bound to the block
size L via x0 � 1� 1=g�L�, where g�L� � L= logL.
Straightforward but lengthy calculations show then that
the entropy as a function of L is asymptotically upper
bounded [21] by

S�~��  O�tr�1� ~�2	 logg�L��: (10)

Hence, together with the lower bound this means that
tr�1� ~�2	 essentially determines the asymptotic scaling
of the entropy.

The necessity of coupling the upper bound to L can
easily be understood physically, when one recalls that there
is always a choice of the local basis in which each normal
mode inside the block is only correlated with at most one
mode outside [22]. With increasing block size, more and
more modes inside lose their correlations with the exterior,
such that the number of nearly pure normal modes domi-
nates more and more. Since the corresponding eigenvalues
are 
j ’ 
1, the point x0, for which the bound is tight,
should tend to 1 as L! 1. Setting x0 � 1 right from the
beginning is, however, not possible since the derivative of
h�x� at this point diverges.

Let us now investigate the scaling of tr�1� ~�2	. To this
end we introduce the positive Fejér kernel [23]

FL�x� �
X

�;�2ZL

eix����� �
cos�Lx� � 1

cos�x� � 1
; (11)

and we abbreviate
Qd
i�1 FL�ki� by FL�k�. Then following

Eq. (5) we have

tr�1� ~�2	 �
4

�2��2d
Z
dkdk0	�k��1� 	�k0�	FL�k� k0�

�
4

�2��2d
Z
dq��q�FL�q�; (12)

��q� �
Z
dk	�k��1� 	�q� k�	: (13)

To further evaluate Eq. (12), we have to exploit the fact that
with increasing L the Fejér kernel FL�x� becomes more and
more concentrated around x � 0. In fact, FL�0� � L2,
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R
�
�� dxFL�x� � 2�L, and for all � > 0 there exists a finite

constant c� such thatZ
���;�	d

dq��q�FL�q�  c� �
Z
���;�	d

dq��q�FL�q�:

(14)
The crucial point here is that c� does not depend on L.
Hence, the asymptotic scaling of the entropy depends only
on the behavior of the function ��q� in an � neighborhood
of the origin.

The function ��q� has a very intuitive interpretation: it
is the volume of the part of the Fermi sea in k space, which
is no longer covered if we shift the Fermi surface by a
vector q (see Fig. 1). So what is the behavior of ��q� near
the origin? Obviously, ��0� � 0 and ��q� � 0. Moreover,
� is typically not differentiable at q � 0, but it rather has
the structure of a pointed cone.

Let us assume that the Fermi sea is a set of nonzero
measure with a finite nonzero surface. This means, in
particular, that almost all points with 	�k� � 1 are interior
points of the Fermi sea, and it implies that � is a continu-
ous function in k space [24]. In fact, an infinite boundary
could lead to a discontinuity of � at the origin. This
restriction excludes both trivial cases (zero entropy due
to zero surface) and exotic cases (fractal or Cantor set like
Fermi seas). For all other cases it enables us to bound ��q�
in a neighborhood of the origin by pointed cones in the
following manner: consider the surface of the closed in-
terior of the Fermi sea in one unit cell of the reciprocal
lattice. Let s�q� be the area of the projection of this surface
onto the hyperplane with normal vector q, where we ac-
count for each front of the surface. If, for example, the
Fermi sea consists of two disjointed three-dimensional
spheres with radius r, then s�q� � 2�r2 in every direction.
Since ��q� is the volume in which the Fermi sea changes
upon shifting it by q, we have in an � neighborhood of the
origin that ��q� is given by s�q�kqk2. Using the fact that
FIG. 1. Consider the Fermi surface and shift it by a vector q in
k space. ��q� is then given by the (dark gray) area of the Fermi
sea, which is no longer covered by its translation. The scaling of
the entanglement entropy depends only on the behavior of � in
the vicinity of q � 0.

01040
the Fermi surface is assumed to be finite, we know that s�q�
is bounded from above by a finite constant s�. Let us
assume for the moment that there exists a nonzero lower
bound s� as well. Then we can bound the integral in
Eq. (14) by replacing ��q�with s
kqk2. Exploiting further
that kqk1 � kqk2 � kqk1=

���
d
p

and that FL is symmetric,
leads to upper and lower bounds that are up to a finite
constant given by

2ds

Z
�0;�	d

dqFL�q�kqk1 � 2ds

Xd
i�1

Z
�0;�	d

dqFL�q�qi

� 2ds
�2�L�d�1
Z �

0
dxFL�x�x:

(15)

The remaining integral is the Fejér sum of a linear function,
which can be evaluated [21] to
Z �

0
dxFL�x�x � 2�1� c� � ln2�  �L� �O�L�1�	

� 2 lnL�O�1�; (16)

where c� ’ 0:577 is Euler’s constant and  denotes the
digamma function.

We still have to discuss the case infqs�q� � 0. In this
case we have to use different linear bounds for different
directions in Eq. (15). Since s�q� will be larger than some
s� > 0 at least in one direction, we are in the end led to the
same type of integral and thus to the same asymptotic
scaling.

Putting it all together, we have, indeed, that tr�1� ~�2	

scales as L�d�1� lnL since all the involved constants are
finite and depend not on L but merely on the structure of
the Fermi sea. The above argumentation holds under the
assumption that the Fermi surface is not too exotic.
However, if the interactions are finite in range, then the
Fermi surface of the ground state is differentiable to infi-
nite order, and it is, in particular, finite. In general, how-
ever, one has to check whether or not the structure of the
Fermi sea gives rise to an infinite slope or a discontinuity of
��q� at the origin.

The existence of Fermi surfaces leading to a scaling of
the entanglement entropy, which surpasses the above law,
can easily be understood: consider a Fermi sea given by a
checkerboard with squares of edge length l. Then shifting
the Fermi surface by l along any lattice axis yields � �
2�2 such that a naive limit l! 0 would, indeed, give rise
to a Ld scaling of the entropy. Needless to say, the checker-
board does not have a well-defined limit—however, fol-
lowing the same idea, more sophisticated Cantor-set-like
constructions will do the same job without any caveat. In
fact, for d � 1 such states were constructed in [19].

Remarkably, fractal or Cantor-set-like structures are
known to appear in tight-binding models. The most promi-
nent example is the Azbel-Hofstadter Hamiltonian [25]
with noninteger flux, leading to the famous Hofstadter
butterfly for the spectrum. Since the interaction matrix
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Tkl � expi
R
l
k A�s�ds (with A being the vector potential) is

quasiperiodic and not translational invariant, this case is,
however, not directly covered by the above argumentation.
The question, which physically interesting translational
invariant Hamiltonians give rise to a violation of the above
scaling law via a fractional Fermi sea, remains an interest-
ing problem for future research.

In conclusion, we derived a method of relating the
structure of the Fermi sea in tight-binding models to the
scaling of the entanglement entropy. For every finite non-
zero Fermi surface we proved the violation of a strict area
law (as it is assumed for noncritical systems [6,13,26]) by a
logarithmic correction, i.e.,

c�Ld�1 logL  S  c�Ld�1�logL�2; (17)

with constants c
 depending only on the Fermi sea. By the
strong subadditivity of the entropy, the same scaling be-
havior holds true also for other regions, e.g., spheres, as
long as they can be nested into two cubes of edge lengths L
and cLwith c independent of L. The additional logL in the
upper bound is presumably an artifact (cf. [10,27]) coming
from the incompatibility of tight quadratic upper bounds
with the binary entropy function at 
1.

Note, finally, that the derived result can be applied to
spin models in one dimension [10,19]. In this case a
Jordan-Wigner transformation maps fermionic operators
onto Pauli spin operators such that every tight-binding
Hamiltonian with nearest neighbor interactions in Eq. (2)
is then mapped onto a spin Hamiltonian of the form

Ĥ � �
X
�

h0�z� � h1��x��x��1 � �
y
��

y
��1� (18)

� h2��
x
��

y
��1 � �

y
��x��1�; (19)

with some couplings hi. Conversely, every such
Hamiltonian is covered by Eq. (2), and we are in general
allowed to add arbitrary interaction terms differing from
those in Eqs. (18) and (19) by a sequence of �zs between
every two Pauli operators. For higher dimensions, how-
ever, an analogous construction fails, since then Jordan-
Wigner transformations no longer preserve locality.

The author thanks T. Cubitt, J. Eisert, D. Porras, and I.
Cirac for valuable discussions and D. Gioev and I. Klich,
who addressed the same question independently [27], for
bringing Ref. [19] to his attention.
[1] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M.
Wolf, Phys. Rev. Lett. 94, 140601 (2005); J. I. Latorre,
C. A. Lütken, E. Rico, and G. Vidal, Phys. Rev. A 71,
034301 (2005).

[2] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,
227205 (2004); F. Verstraete and J. I. Cirac, cond-mat/
0407066; V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev.
Lett. 95, 057206 (2005); M. Zwolak and G. Vidal, Phys.
Rev. Lett. 93, 207205 (2004); G. Vidal, Phys. Rev. Lett.
93, 040502 (2004).
01040
[3] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[4] R. Bousso, Rev. Mod. Phys. 74, 825 (2002).
[5] Despite the motivation for [6] the relation to black hole

entropies and the holographic principle is not entirely
clear [4]. After all, gravity does not enter, and the size
of the Hilbert space is a priori unrelated to the entangle-
ment entropy.

[6] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys.
Rev. D 34, 373 (1986); M. Srednicki, Phys. Rev. Lett. 71,
666 (1993).

[7] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.
Lett. 90, 227902 (2003); J. I. Latorre, E. Rico, and
G. Vidal, Quantum Inf. Comput. 4, 48 (2004).

[8] I. Peschel, J. Stat. Mech. 12 (2004) P12005; I. Peschel,
J. Phys. A 38, 4327 (2005).

[9] A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 38, 2975
(2005); B.-Q. Jin and V. E. Korepin, J. Stat. Phys. 116, 79
(2004); G. Refael and J. E. Moore, Phys. Rev. Lett. 93,
260602 (2004).

[10] J. P. Keating and F. Mezzadri, Phys. Rev. Lett. 94, 050501
(2005).

[11] V. Korepin, Phys. Rev. Lett. 92, 096402 (2004).
[12] P. Calabrese and J. Cardy, J. Stat. Mech. 06 (2004)

P06002.
[13] M. B. Plenio, J. Eisert, J. Dreissig, and M. Cramer, Phys.

Rev. Lett. 94, 060503 (2005).
[14] R. Verch and R. F. Werner, Rev. Math. Phys. 17, 545

(2005).
[15] S. B. Bravyi and A. Yu. Kitaev, Ann. Phys. (N.Y.) 298, 210

(2002).
[16] G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev.

88, 101 (1952); G. C. Wick, A. S. Wightman, and E. P.
Wigner, Phys. Rev. D 1, 3267 (1970).

[17] S. Bravyi, Quantum Inf. Comput. 5, 216 (2005).
[18] 	�k� is a function in k space, which is one if the wave

vector k is inside the Fermi sea and zero otherwise. For
ground states 	�k� � �1� ��k�=j��k�j	=2.

[19] M. Fannes, B. Haegeman, and M. Mosonyi, math-ph/
0306055.

[20] The upper bound f�x� � a�1� x2� � b � h�x�, which is
tight at x0, is found by solving f�x0� � h�x0� and f0�x0� �
h0�x0�. This gives

a � �log�1� x0� � log�1� x0�	=�4x0	;

b � 1� ��1� x0�
2 log�1� x0�

� �1� x0�
2 log�1� x0�	=�4x0	:

[21] Here Landau’s asymptotic notation is used: � � O��
means that �< C for some constant C.

[22] A. Botero and B. Reznik, Phys. Lett. A 331, 39 (2004).
[23] H. Dym and H. P. McKean, Fourier Series and Integrals

(Academic Press, New York, 1972).
[24] In fact, ��q� ���q� �q� k �q k SF, where SF is the

area of the Fermi surface.
[25] M. Ya. Azbel, Sov. Phys. JETP 19, 634 (1964); D. R.

Hofstadter, Phys. Rev. B 14, 2239 (1976); P. B.
Wiegmann and A. V. Zabrodin, Phys. Rev. Lett. 72,
1890 (1994).

[26] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71,
022315 (2005); A. Hamma, R. Ionicioiu, and P. Zanardi,
Phys. Lett. A 337, 22 (2005).

[27] D. Gioev and I. Klich, quant-ph/0504151.
4-4


