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Emergence of Chaos in Quantum Systems Far from the Classical Limit
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The dynamical status of isolated quantum systems is unclear as conventional measures fail to detect
chaos in such systems. However, when quantum systems are subjected to observation—as all experi-
mental systems must be—their dynamics is no longer linear and, in the appropriate limit(s), the evolution
of expectation values, conditioned on the observations, closely approaches the behavior of classical
trajectories. Here we show, by analyzing a specific example, that microscopic continuously observed
quantum systems, even far from any classical limit, can have a positive Lyapunov exponent, and thus be
truly chaotic.

DOI: 10.1103/PhysRevLett.96.010403 PACS numbers: 05.45.Mt, 03.65.Ta, 05.45.Pq
There can be no chaos in the dynamics of bounded and
isolated (or closed) quantum systems. This is because
quantum evolution is necessarily quasiperiodic, a direct
consequence of the discrete spectrum of the quantum
Liouville equation [1]. This leads to a widely recognized
difficulty, as classical mechanics, which manifestly exhib-
its chaos, must emerge from quantum mechanics in an
appropriate macroscopic limit [2]. The key to the resolu-
tion of this apparent paradox lies in the fact that all
experimentally accessible situations necessarily involve
measured, open systems: the central importance of such
situations in the context of chaos was first emphasized by
Chirikov [3]. In a parallel development, continuous quan-
tum measurement theory [4] has led to the successful
understanding of the emergence of classical dynamics
from the underlying quantum physics [5–8], and inequal-
ities have been derived that encapsulate the regime under
which classical motion, and thus classical chaos, exist [6].
The transition to classical mechanics results from the
localization of the density matrix due to the information
continuously provided by the measurement (itself medi-
ated by an environmental interaction), and the balancing of
this against the unavoidable noise from the quantum back-
action of the measurement. For a macroscopic system, the
Ehrenfest theorem holds as a result of localization and,
simultaneously, the backaction noise is negligible, result-
ing in a smooth classical trajectory.

While it has been established that observed quantum
systems can be chaotic when they are macroscopic enough
that classical dynamics has emerged, can they be chaotic
outside this limit? This is the question we address here. By
defining and computing the Lyapunov exponent for an
observed quantum system deep in the quantum regime,
we are able to show that the system dynamics is chaotic.
Further, the Lyapunov exponent is not the same as that of
the classical dynamics that emerges in the classical limit.
Since the quantum system in the absence of measurement
is not chaotic, this chaos must emerge as the strength of the
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measurement is increased, and we examine the nature of
this emergence.

Chaos is quantified in a dynamical system by the maxi-
mal Lyapunov exponent [9]. The exponent yields the
(asymptotic) rate of exponential divergence of two trajec-
tories which start from neighboring points in phase space,
in the t! 1 limit, the points staying infinitesimally close.
The maximal Lyapunov exponent characterizes the sensi-
tivity of the evolution to changes in the initial condition: if
it is positive, then the system is exponentially sensitive to
initial conditions, and is said to be chaotic. We apply this
notion below to the observation-conditioned evolution of
quantum expectation values.

The evolution of a simple single-particle quantum sys-
tem under an ideal continuous position measurement is
given by the nonlinear stochastic master equation (SME)
for the system density matrix [10]:
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where the first term on the right-hand side is due to unitary
evolution, H being the Hamiltonian, and the second term
represents diffusion from ‘‘quantum noise’’ due to the
unavoidable quantum backaction of the measurement.
The position operator is x, and the parameter k character-
izes the rate at which the measurement extracts informa-
tion about the observable, and which we will refer to as the
strength of the measurement [11]. The final term represents
the change in the density matrix as a result of the infor-
mation gained from the measurement. Here, dy is the
infinitesimal change in the continuous output of the mea-
suring device in the time dt. The continuous output of the
measuring device, y�t�, referred to usually as the measure-
ment record, is determined by dy � hxidt� dW=
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,
where dW is the Wiener increment, describing driving by
Gaussian white noise [12]. The noise dW is due to the fact
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that the results of the measurement are necessarily random.
(Note that the backaction and dW are uncorrelated with
each other.) Thus on a given experimental run, the system
will be driven by a given realization of the noise process
dW. We will label the possible noise realizations by s. The
SME (1) is valid for measurements on a wide range of
systems, and imposes no restrictions on the strength of the
measurement backaction, so long as the probe and system
time scales are widely separated and damping due to the
probe can be neglected.

A single quantum mechanical particle is in principle an
infinite dimensional system. However, for the purpose of
defining an observationally relevant Lyapunov exponent, it
is sufficient to use a single projected data stream: Here we
choose the expectation value of the position, hx�t�i. The
important quantity is thus the divergence, ��t� � jhx�t�i �
hxfid�t�ij, between a fiducial trajectory and a second
‘‘shadow’’ trajectory infinitesimally close to it. It is im-
portant to keep in mind that the system is driven by noise.
Since we wish to examine the sensitivity of the system to
changes in the initial conditions, and not to changes in the
noise, we must hold the noise realization fixed when
calculating the divergence. The Lyapunov exponent is thus

� � lim
t!1

lim
�s�0�!0

t�1 ln�s�t� � lim
t!1

�s�t�; (2)

where the subscript s denotes the noise realization. This
definition is the obvious generalization of the conventional
ordinary differential equation definition to dynamical
averages, where the noise is treated as a drive on the
system. Indeed, under the conditions when (noisy) classi-
cal motion emerges, and thus when localization holds
(Fig. 1), it reduces to the conventional definition, and
yields the correct classical Lyapunov exponent. To combat
slow convergence, we measure the Lyapunov exponent by
averaging over an ensemble of finite-time exponents �s�t�
instead of taking the asymptotic long-time limit for a single
trajectory.
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FIG. 1 (color). Position distribution for the Duffing oscillator
with measurement strengths k � 0:01 (red) and k � 10 (green),
demonstrating measurement-induced localization (k � 10). The
momentum distribution behaves similarly.
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It is important to note that this definition of the
Lyapunov exponent is not merely a formal result; the
exponent can be obtained experimentally from measure-
ments on a real system as in next-generation cavity QED
and nanomechanics experiments [13]. The procedure is as
follows. Experimentally, one would use the known mea-
surement record to obtain the fiducial trajectory. Knowing
the system Hamiltonian, one then calculates the Lyapunov
exponent by following a shadow trajectory using the same
dW as that of the measured fiducial trajectory.

A key result follows from our definition of the exponent.
For unobserved, i.e., isolated quantum systems, it is pos-
sible to prove, by employing unitarity and the Schwarz
inequality that, as expected, � vanishes and further that
the finite-time exponent, ��t�, decays away as 1=t [14]. As
we have emphasized earlier, however, once measurement
is included the evolution becomes nonlinear and the
Lyapunov exponent need not vanish. We now address
this crucial question for a specific example.

The system we consider is the quantum Duffing oscil-
lator [15], which is a single particle in a double-well
potential, with sinusoidal driving. The Hamiltonian for
the Duffing oscillator is

H � p2=2m� Bx4 � Ax2 ��x cos�!t�; (3)

where p is the momentum operator; m the particle mass;
and A, B, and � determine the potential and the strength of
the driving force. We fix the values of the parameters to be
m � 1, B � 0:5, A � 10, � � 10, and ! � 6:07. The
action of a system relative to @ can be varied either by
changing parameters in the Hamiltonian, or by introducing
scaled variables so that the Hamiltonian remains fixed, but
the effective value of @ becomes a tunable parameter. Here
we employ the latter choice as it captures the notion of
system size with a single number; the smaller @ the larger
the system size, and vice versa.

To examine the emergence of chaos we will first choose
@ � 10�2, which is small enough so that the system makes
a transition to classical dynamics when the measurement is
sufficiently strong. In this way, as we increase the mea-
surement strength, we can examine the transformation
from essentially isolated quantum evolution all the way
to the (known) chaos of the classical Duffing oscillator. To
examine the emergence of chaos, we simulate the evolu-
tion of the system for k � 5	 10�4; 10�3; 0:01; 0:1; 1; 10.
When k 
 0:01, the distribution is spread over the entire
accessible region, and Ehrenfest’s theorem is not satisfied.
Conversely, for k � 10, the distribution is well localized
(Fig. 1), and Ehrenfest’s theorem holds throughout the
evolution [16]. Since the backaction noise, characterized
by the momentum diffusion coefficient, Dp � @

2k, re-
mains small, at this value of k the motion is that of the
classical system, to a very good approximation.

Stroboscopic maps help reveal the global structural
transformation in phase space in going from quantum to
classical dynamics (Fig. 2). The maps consist of points
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FIG. 2 (color). Phase-space stroboscopic maps shown for 4 dif-
ferent measurement strengths, k � 5	 10�4, 0.01 (top), and 1,
10 (bottom). Contour lines are superimposed to provide a
measure of local point density at relative density levels of
0.05, 0.15, 0.25, 0.35, 0.45, and 0.55.

FIG. 3 (color). Finite-time Lyapunov exponents ��t� for mea-
surement strengths k � 5	 10�4; 0:01; 10, averaged over 32 tra-
jectories for each value of k (linear scale in time, top, and
logarithmic scale, bottom; bands indicate the standard deviation
over the 32 trajectories). The (analytic) 1=t falloff at small k
values, prior to the asymptotic regime, is evident in the bottom
panel. The unit of time is the driving period.
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through which the system passes at time intervals separated
by the period of the driving force. For very small k, hxi and
hpi are largely confined to a region in the center of phase
space. Somewhat remarkably, at k � 0:01, although the
system is largely delocalized as shown in Fig. 1, nontrivial
structure appears, with considerable time being spent in
certain outer regions. By k � 1 the localized regions have
formed into narrower and sharper swirling coherent struc-
tures. At k � 10 the swirls disappear, and we retrieve the
uniform chaotic sea of the classical map (the small ‘‘holes’’
are periodic islands). The swirls in fact correspond to the
unstable manifolds of the classical motion. Classically,
these manifolds are only visible at short times, as continual
and repeated folding eventually washes out any structure in
the midst of a uniform tangle. In the quantum regime,
however, the weakness of the measurement, with its in-
ability to crystallize the fine structure, has allowed them to
survive: we emphasize that the maps result from long-time
integration, and are therefore essentially time invariant.

To calculate the Lyapunov exponent we implement a
numerical version of the classical linearization technique
[17], generalized to quantum trajectories. The method was
tested on a classical noisy system against results from
solving the exact equations for the exponents [18]. The
calculation is very numerically intensive, as it involves
integrating the stochastic Schrödinger equation equivalent
to the SME (1) over thousands of driving periods, and
averaging over many noise realizations; parallel supercom-
puters were invaluable for this task.

We find that as t is increased, for nonzero k, the value
obtained for ��t� falls as 1=t, following the behavior ex-
pected for k � 0, until a point at which an asymptotic
regime takes over, stabilizing at a finite value of the
Lyapunov exponent as t! 1. This behavior is shown in
Fig. 3 for three different values of k. The Lyapunov ex-
ponent as a function of k is shown in Fig. 4. The exponent
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increases over 2 orders of magnitude in an approximately
power-law fashion as k is varied from 5	 10�4 to 10,
before settling to the classical value, �Cl � 0:57. The
results in Figs. 3 and 4 show clearly that chaos emerges
in the observed quantum dynamics well before the limit of
classical motion is obtained.

We now compute the Lyapunov exponent for the quan-
tum system when its action is sufficiently small that
smooth classical dynamics cannot emerge, even for strong
measurement. Taking a value of @ � 16, we find that for
k � 5	 10�3, � � 0:029� 0:008, for k � 0:01, � �
0:048� 0:016 and for k � 0:02, � � 0:089� 0:02. Thus
the system is once again chaotic, and becomes more
strongly chaotic the more strongly it is observed. From
these results, it is clear that there exists a purely quantum
regime in which an observed system, while behaving in a
fashion quite distinct from its classical limit, nevertheless
evolves chaotically with a finite Lyapunov exponent, also
distinct from the classical value.

It is worth pointing out that an analogous analysis can be
carried out for a continuously observed classical system.
First we define an unobserved classical system as one
where the observer has access to a phase space probability
density for the system, but no access to individual particle
trajectories. In this case, trajectories only arise if an ob-
server makes measurements on the system in close analogy
3-3



0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10
k

λ

FIG. 4 (color). The emergence of chaos: The Lyapunov ex-
ponent � as a function of measurement strength k. Error bars
follow those of Fig. 3, taken at the final time.
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to the quantum situation studied above. It can be shown
that in the unobserved case the average of x for an en-
semble of particles does not exhibit chaos [14].

In a classical system the external noise is not connected
to the strength of the measurement, so one can simulta-
neously have strong measurement and weak noise, which is
possible in the quantum theory only under specific con-
ditions [6]. If we consider a noiseless observed chaotic
classical system, then even a weak measurement will, over
time, localize the probability density, generating an effec-
tive trajectory limit for hx�t�i possessing the classical
Lyapunov exponent, �Cl [14].

When the noise is sufficiently weak, �Cl will once again
be recovered by a continuous measurement. As one way to
understand this case, we can employ the quantum result as
an intermediate step. Consider the quantum Lyapunov
exponent at a fixed value of k (where � < �Cl) as in
Fig. 4. If the value of @ is now reduced, the observed
dynamics must tend to the classical limit as the quantum-
classical correspondence inequalities of Ref. [6] are better
satisfied. Thus the Lyapunov exponent in the classical limit
of quantum theory—which, to a very good approximation,
is just classical dynamics driven by weak noise—must
tend to �Cl. If, however, the noise is not weak, observed
classical dynamics, like that of a quantum system outside
the classical regime, will also not be localized, and hx�t�i
may well have an exponent different from �Cl. In addition,
one may expect the nonlocalized quantum and classical
evolutions to have quite different Lyapunov exponents for
hx�t�i, especially when @ is large on the scale of the phase
space, as quantum and classical evolutions generated by a
given nonlinear Hamiltonian are essentially different [19].
The nature of the Lyapunov exponent for nonlocalized
classical systems, and its relationship to the exponent for
quantum systems is a very interesting open question.
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