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Quantum Metrology
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We point out a general framework that encompasses most cases in which quantum effects enable an
increase in precision when estimating a parameter (quantum metrology). The typical quantum precision
enhancement is of the order of the square root of the number of times the system is sampled. We prove that
this is optimal, and we point out the different strategies (classical and quantum) that permit one to attain
this bound.
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FIG. 1 (color online). Different strategies for the estimation of
a parameter ’ involving N parallel samplings of a unitary
operator U’ (black squares). The CC strategy involves separable
input states and separable measurements [i.e., local operations
and measurements whose results are communicated classically
(LOCC)]. The CQ strategy involves separable input states and
general measurement schemes. The QC strategy involves general
input states (also entangled) and separable measurements. The
QQ strategy involves general input states and general measure-
ment schemes. The triangles on the left represent state prepara-
tion and the symbols on the right represent measurements. The
gray boxes represent a unitary operation involving multiple
probes (Q strategies).
When estimating an unknown parameter in a quantum
system, we typically prepare a probe, let it interact with the
system, and then measure the probe. If the physical mecha-
nism that governs the system dynamics is known, we can
deduce the value of the parameter by comparing the input
and the output states of the probe. Since quantum states are
rarely distinguishable with certainty, there usually is an
inherent statistical uncertainty in such estimation. To re-
duce this uncertainty, we can use N identical, independent
probes, measure them, and average the results. From the
central limit theorem, for large N the error on the average
decreases as �=

����
N
p

, where �2 is the variance of the
measurement results associated with each probe. Using
the same physical resources with the addition of quantum
effects (such as entanglement or squeezing), an even better
precision can often be achieved with a customary

����
N
p

enhancement, i.e., a scaling of 1=N [1].
In this Letter we introduce a theoretical framework that

encompasses all of these strategies, and we show that the
scaling 1=N is the general lower bound to the estimation
error: The only way to further decrease the error is to
reduce �, by improving the probe response to the interac-
tion with the system. In analogy to quantum communica-
tion [2], different scenarios are possible (see Fig. 1): Either
we do not employ quantum effects [classical-classical
(CC) strategy] or quantum effects can be used only in the
probe measurement [classical-quantum (CQ) strategy] or
only in the probe preparation [quantum-classical (QC)
strategy] or in both stages [quantum-quantum (QQ) strat-
egy]. We show that the ultimate precision limit for the CC
and CQ strategies is the classical limit 1=

����
N
p

, while the
ultimate limit for the QC and QQ strategies is 1=N. This
means that, even though entanglement at the preparation
stage is useful to increase the precision, it is useless at the
measurement stage. Hence, the previously proposed meth-
ods for quantum-enhanced parameter estimation can be
modified relinquishing entangled measurements without
06=96(1)=010401(4)$23.00 01040
performance loss. Moreover, if one is willing to exchange
physical resources with running time, the same precision
1=N of the quantum strategy can be achieved also classi-
cally by sequentially applying the transformation N times
on the same probe (multiround protocol; see Fig. 2) [3,4].
We prove optimality also in this case: No multiround
1-1 © 2006 The American Physical Society
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FIG. 2 (color online). Sequential (or multiround) protocol with
a single probe. Thanks to the ancillary systems A, this scheme
encompasses also adaptive techniques where information on ’ is
extracted between successive applications of the unitary U’. As
in Fig. 1, the triangle represents the probe state preparation, the
black squares represent U’, the symbols on the right represent
detection, and the gray boxes represent unitary operations in-
volving both the probe and the ancillas.
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protocol exists that can achieve an error that scales better
than 1=N.

In the case of interferometry, it has long been claimed
that, when using N photons in the interferometer, the
Heisenberg limit 1=N is the ultimate bound to precision
in phase measurements (whereas classical strategies permit
one to reach only the shot noise limit of 1=

����
N
p

[5]).
However, the available proofs are based [6] on an incorrect
interpretation of the time-energy uncertainty relation [7],
or seem to lack the necessary generality as they refer [5,8]
to specific interferometric setups. Our analysis clarifies
that, indeed, the Heisenberg limit is the bound to interfero-
metric precision. Our bound also applies to quantum
phase-estimation strategies [9], which are customarily pre-
sented as examples of exponential-speedup algorithms. In
fact, even though a precision �2�K that scales exponen-
tially with the number K of employed qubits is achieved,
the algorithms require an exponential number of appli-
cations of the unitary U that generates the phase shift.
Thus, in terms of the number N ’ 2K of times that U needs
to be employed in the procedure, one finds the same 1=N
precision scaling of our optimality bound for sequential
strategies.

In the following, we first analyze the theoretical frame-
work that includes most known quantum metrology proto-
cols. We then derive the bounds to precision in the different
scenarios and show that they are achievable. Finally, we
show how this relates to the known protocols and how to
generate new protocols.

Theoretical framework.—Our goal is to find the most
efficient possible way of estimating a parameter ’, intro-
duced by the system onto the probe through a unitary
operator U’ � exp��i’H�, where the generator H is a
known Hermitian operator. If we are allowed to sample the
system N times, we can either use the parallel configura-
tion of Fig. 1 where N probes are jointly employed or use
the sequential configuration of Fig. 2 where a single probe
is employed N times (or a combination of these two
strategies). Notice that the latter configuration is in princi-
01040
ple more powerful than the former. In fact, a sequential
strategy can simulate any other configuration that employs
the same number of U’’s, if we add appropriate ancillas
and if we allow the total running time to increase.

We start by analyzing the parallel strategies. Taking j�i
as the state of the N probes, it will be transformed into
U�N’ j�i, where U�N’ is the unitary transformation gener-
ated by h �

PN
j�1 Hj (Hj acting on the jth probe). In order

to take into account the possibility that ’ can be estimated
through a general (biased or unbiased) estimator, it is
convenient to use the error estimate [10,11]

�’ �
��
’est

���������
@h’estiav

@’

���������’
�

2
�

av
; (1)

where ’est is the estimator employed and where the brack-
ets h iav denote statistical averaging (the purpose of the
derivative @h’estiav=@’ is simply to express both ’est and
’ in the same ‘‘units’’). Whatever is the measurement
scheme employed, the error �’ is bounded by the gener-
alized uncertainty relation [11],

�’�h � 1=�2
���
�
p
�; (2)

where ��h�2 � hh2i � hhi2 is the variance of h on the input
state j�i of the N probes, and � is the number of times the
estimation is repeated. Equation (2) derives from the
Cramer-Rao bound and is asymptotically achievable in
the limit of large �. It implies that the minimum error
�’ is obtained when �h is maximum. If j�i is separable
(CC and CQ strategies), �h � 	

P
j�

2Hj

1=2 where �2Hj

is the variance ofHj on the state of the jth probe. Hence the
maximum �h is achieved by preparing each probe in a
state having maximum spread for Hj, i.e., the equally
weighted superpositions of the eigenvectors j�Mi and
j�mi of Hj corresponding, respectively, to the maximum
and minimum eigenvalues �M and �m. These states have
�Hj � ��M � �m�=2, so that for any state we find �h �
	
P
j�

2Hj

1=2 �

����
N
p
��M � �m�=2. This, through Eq. (2),

gives an optimal CC and CQ error of

�’ � 1=	
�������
�N
p

��M � �m�
: (3)

This bound can be attained, for instance, by Ramsey inter-
ferometry, i.e., by preparing all the probes in the state
�j�Mi � j�mi�=

���
2
p

, and by measuring the probability that
each probe remains unchanged at the output. Even though
Ramsey interferometry does not employ entangled mea-
surements, these are accounted for in the derivation of
Eq. (2); see [11]. This proves that entangled measurements
are not necessary to achieve (3): The CC strategy is as
accurate as the CQ strategy [12].

On the other hand, if j�i can be entangled (QC and QQ
strategies), the maximum �h corresponds to a j�i, which
is an equally weighted superposition of the eigenvectors
relative to the maximum and minimum eigenvalues of the
global generator h, i.e., N�M and N�m. Since this state has
1-2
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a spread �hmax � �N�M � N�m�=2, then a generic state
has spread �h � N��M � �m�=2. This, through Eq. (2),
gives an optimal QC and QQ error of

�’ � 1=	
���
�
p
N��M � �m�
; (4)

with a
����
N
p

improvement over Eq. (3). Notice that the
derivation still applies if j�i includes some external an-
cillas in addition to the probes, so that Eq. (4) accounts also
for those detection strategies where half of an entangled
state is fed into the system and a joint measurement is
performed [13]. Also the bound (4) is attainable: Use the
following entangled state of N probes:

j�i �
1���
2
p

�
j�mi1 
 
 
 j�miN � j�Mi1 
 
 
 j�MiN

�
; (5)

and estimate ’ by measuring the observable X �
j�mih�Mj � j�Mih�mj separately on each probe at the out-
put (an LOCC strategy). Since hX�Niout � cos	N’��M �
�m�
 and the variance �X�N � j sin	N’��M � �m�
j, after
repeating the experiment � times the error on ’ can be
obtained easily from error propagation as

�’ �
1���
�
p �X�N=

��������
@hX�Ni
@’

���������
1���

�
p
N��M � �m�

: (6)

This procedure attains the bound (4) and again employs
only separable measurements. This proves that entangled
measurements are not necessary to achieve (4): The QC
strategy is as accurate as the QQ strategy. It has been
pointed out that the above �’ refers only to the determi-
nation of the last significant digits of’ [14]. If one wants to
determine all digits of ’, the procedure must be changed,
but the 1=N scaling persists. For example, one can use a
single probe � times to recover the first decimal digit of
’=2�. Then, one can entangle 10 probes and determine the
second decimal digit, still with � repetitions. Iterating, the
jth decimal digit will need 10j entangled probes. Thus, the
total number of probes (employed � times) to recover l
decimal digits is

Pl
j�0 10j � �10l�1 � 1�=9: Almost all the

probes (roughly a fraction 9=10 of the total) are employed
to determine the last digit only.

Instead of a parallel strategy on N probes, one can
employ a sequential strategy on a single probe. In this
case the generator h in Eq. (2) must be modified: In-
stead of referring to the unitary U�N’ acting on N probes,
it now refers to a unitary W’, which contains N ap-
plications of U’ on a single probe, i.e., W’ �

VNU’VN�1U’ 
 
 
V1U’V0. Here the Vj’s are arbitrary
unitary operators acting on the probe and, eventually, on
ancillary systems that can be used in adaptive strategies to
extract information during the estimation process (i.e.,
the gray boxes of Fig. 2). In this case, the generator of
W’ is h � i�@W’=@’�W

y
’ �

PN
j�1 H

0
j�’�, whereH0j�’� �

VjU’ 
 
 
V1U’V0HV
y
0U
y
’V
y
1 
 
 
U

y
’V
y
j (H being the gen-

erator of U’). Since all the H0j have the same spectrum as
01040
H, then the maximum eigenvalue of h is upper bounded by
N�M, while the minimum eigenvalue of h is lower
bounded by N�m. Hence, �h � N��M � �m�=2, and
Eq. (2) in this case implies

�’ � 1=	
���
�
p
N��M � �m�
: (7)

It is identical to the QC-QQ bound of Eq. (4), even though
it refers to a different physical situation. This bound is
again achievable through Ramsey interferometry, by pre-
paring the single probe in the state �j�Mi � j�mi�=

���
2
p

,
applying to it the transformation UN

’ , and measuring the
probability that it remains unchanged. Notice that the same
analysis is valid also when the U’’s are applied to more
than one probe, i.e., for the strategies that are intermediate
between the parallel and the sequential ones.

The QC and QQ protocols may seem less appealing than
the multiround protocol since they require entanglement
among the N probes to achieve the same sensitivity.
However, their parallelizable structure entails that their
running time may be N times smaller than the running
time of the (necessarily sequential) multiround protocol.
This is one of the instances frequently encountered in
quantum computation where entanglement can convert
spatial resources into temporal resources.

The above analysis illustrates how entanglement permits
the full exploitation of the Hilbert space of N probes,
granting access to ‘‘high-resolution states’’ such as the
one given in Eq. (5). In repeating the process � times, we
can then achieve a precision that scales as 1=�N

���
�
p
� for

large �. This is a purely quantum effect. In fact, in a
classical setting there is no advantage in grouping the
measurements into � groups ofN: The error will invariably
scale as 1=

�������
N�
p

, i.e., as the inverse of the square root of the
total number of measurements.

Notice that all the bounds we derived imply that there is
no lower bound to the error �’ if the system energy is
unbounded, as in the case of the electromagnetic field (i.e.,
if �M � 1). However, in all practical measurement
schemes the energy involved is necessarily finite, which
limits in practice the achievable resolution.

Quantum metrology protocols.—Most quantum metrol-
ogy protocols can be analyzed under the theoretical frame-
work outlined above. In particular, interferometric
strategies can be accounted for by identifying N with the
total number of passes of the employed photons through
the interferometer, and the generator h with the electro-
magnetic field Hamiltonian. Here, the 1=N scaling of the
optimal precision coincides with the Heisenberg limit, and
it is well known that such a limit can be attained through
entangled or squeezed light at the input ports of the inter-
ferometer (e.g., see [8]), or through multiround protocols
[3]. The quantum-positioning and clock-synchronization
protocol [15] is an example of interferometric strategy
where a 1=N scaling in the precision of localization is
obtained using frequency-entangled or number-squeezed
1-3
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photons in a parallel configuration. The same results can be
achieved also in a sequential configuration by bouncing
back and forth a single photon [14].

Our framework encompasses many other estimation
strategies. An example is the quantum-frequency-
standards procedure [6,16], where the collective behavior
of entangled atoms is used to enhance the precision of
frequency measurements. It can be analyzed in our frame-
work by identifying Hj with the two-level Hamiltonian of
each probe atom. In this context, it is interesting to note
that, in agreement with the equivalence between the QC
and QQ strategies, one can achieve the upper bound (4)
measuring separately the population of each atom [14],
without resorting to the entangled measurement of the
original proposals.

Using our framework, it is also possible to design new
quantum metrology protocols. For example, by entangling
N particles in momentum, we can design a strategy to
obtain a better precision in the measurement of their aver-
age position from position measurements on the single
particle (notice that in Ref. [15] the average position was
deduced from time-of-arrival measurements and not from
position measurements).

Even though we assumed that the operator H (i.e., the
generator of the unitary U’) is known, the bounds we
derived are valid also if H is unknown. However, in this
case it is not granted that such bounds are achievable: All
our ‘‘achievability’’ protocols require the knowledge of the
eigenstates of H. Nonetheless, at least in the case of the
reference-frames transmission (a procedure to employ N
spins in transmitting a reference frame to a distant party, in
which H is not known because it is the object to be
estimated), a protocol achieving a scaling of 1=N has
been recently proposed [17].

Conclusions.—State preparation is the primary factor in
boosting the precision of the parameter estimation, while
entangled measurements are never necessary. A

����
N
p

pre-
cision enhancement over what can be attained with a
classical parallel strategy is typically obtained by using
an input state that is entangled on a basis of eigenstates of
H (the generator of the unitary U’) and by measuring a set
of projectors on a basis dual to that. Schematic: (1) entangle
N probes on the basis of eigenstates ofH; (2) let the probes
interact with the system; (3) measure on a dual basis.
Result: a

����
N
p

precision enhancement. This is clearly re-
lated to the fact that entangled states can evolve faster than
unentangled configurations employing the same resources
[18]. Alternatively, a multiround protocol can achieve the
same optimal precision at the expense of a larger running
time.
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