
PRL 95, 268301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
Tailoring the Flow of Soft Glasses by Soft Additives
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We examine the vitrification and melting of asymmetric star polymer mixtures by combining
rheological measurements with mode coupling theory. We identify two types of glassy states, a single
glass, in which the small component is fluid in the glassy matrix of the big one, and a double glass, in
which both components are vitrified. Addition of small-star polymers leads to melting of both glasses, and
the melting curve has a nonmonotonic dependence on the star-star size ratio. The phenomenon opens new
ways for externally steering the rheological behavior of soft matter systems.
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The design of materials with well-defined rheological
properties and the ability to alter these at wish, by tuning
suitable control parameters of the system, are issues of
central importance in today’s soft matter research.
Experimental findings, accumulating at a fast pace, call
for the identification and profound understanding of the
several underlying physical mechanisms that control the
ability of soft materials to support stresses or flow under
shear [1]. In several situations, e.g., in coating or process-
ing applications, it is necessary to dramatically alter the
viscoelastic properties of a material. One possibility to do
so in a controlled way is to exploit the phenomenon of
dynamical arrest. Indeed, close to a liquid-glass transition,
a small variation of external parameters produces a spec-
tacular change in the elastic properties of the material
without significantly affecting its structure [2].

Star polymers have emerged as an ideal model sys-
tem for exploring the flow behavior of soft matter and
elucidating its molecular origin. They consist of f poly-
mer chains covalently anchored onto a common center
[3]. Star-polymer solutions are chemically simple, well-
characterized, and physically tunable in their softness,
building thereby natural bridges between hard colloids
and polymers. This property stems from the particular
form of the effective, entropic interaction between star-
polymer centers [4,5], which has a logarithmic (Yukawa)
form at small (large) separations. Technologically, star
polymers are important in several applications, such as
their use as viscosity modifiers in the oil industry [3] or
their novel applications as drug-delivery agents [6,7].

In this work, we show how one can gain control over the
rheological properties of soft, repulsive, glassy materials
via the addition of a second, soft, repulsive component,
which is chemically identical to the first but smaller in size.
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We consider a star-polymer glass perturbed by smaller star-
polymer additives. We observe melting of the big-star
glass, induced by the small stars, and an unexpected non-
monotonic dependence of the critical amount of additives,
needed to melt the glass, on the big-small star size ratio.
We also perform the corresponding calculations of the
melting line, within the binary mode coupling theory
(MCT) framework [8,9]. The theoretical melting line is
in agreement with the experimental one, reproducing the
qualitative trends of the latter. We demonstrate that the
nonmonotonic behavior arises from two different mecha-
nisms by which the presence of the additive significantly
affects the rheological properties, depending on the size
ratios between the components. The former rests on the
fluidity of the smaller component in the single glass
formed by the larger component. The latter stems from
the mutual soft repulsions in the double glass, in which
both components are vitrified. The melting of such a
double glass represents a novel physical process, in which
a glassy component is liquefied through the addition of a
second glassy component.

Binary mixtures of big and small (1,4-polybutadiene)
stars were prepared in toluene. Three different types of big
stars were employed, having an average functionality f1 �
270 arms and arm molecular weight Ma ranging from
18 000 to 42 000 g=mol [10]. Soft glasses were obtained
at concentration c1=c�1 � 1:4, where c�1 denotes the big-star
overlap concentration. Additional measurements were also
performed with big stars of functionality f1 � 128 with
arm molecular weight of about 80 000 g=mol, which are
very similar to the 270 stars [11]. We express the mixture
composition by the values �1�

3
1 of the big and �2�

3
1 of the

small stars, where �i, i � 1; 2 are the respective number
densities and �i are the corona diameters of the big stars
1-1 © 2005 The American Physical Society
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FIG. 1 (color online). Experimental kinetic phase diagram of
binary star mixtures, indicating regions of liquid and glass for
different concentrations of added small star �2 and size ratios q.
Large stars of functionalities f1 � 270 and 128 were used, with
densities �1�

3
1 � 0:345 and 0.412, respectively. Open symbols

denote a liquid and solid ones a solid (glass) state. Only the data
points closest to the melting lines are shown here. The lines
through the data, passing above the full symbols and below the
empty ones, are guides to the eye.
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appearing in the effective interactions employed in the
theory, coinciding with the stars’ hydrodynamic radii
Rh;i, i � 1; 2. Small stars with three different functional-
ities f2 � 16, 32, and 64 and molecular weights Ma be-
tween 1200 and 80 000 g=mol [12–14] were synthesized
as well. Size ratios q � Rh;2=Rh;1 � �2=�1 varied from
0.15 to 1. The mixture preparation protocol consisted of
creating the big-star glass at fixed number density �1�

3
1 �

0:345 (c1=c
�
1 � 1:4) and then adding small stars with

certain q at a desired density �2, under conditions of
very gentle and prolonged stirring. In this procedure, the
glass was broken and the mixture was left to ‘‘equilibrate’’
again. For the f1 � 128 sample, the fixed density was
�1�

3
1 � 0:412. Dynamical rheological measurements

(time, strain, and frequency sweeps) were carried out in
order to identify the state of the particular samples (solid or
liquid behavior). A strain-controlled rheometer was uti-
lized in the cone-and-plate geometry (25 mm diameter,
0.04 rad cone angle), and dynamic frequency sweep tests
were conducted in the range 100–0:1 rad=s at 20 �C in the
linear viscoelastic regime.

The experiments carried out provide evidence of
U-shaped melting curves in the �q; �2� plane as well as
quantitative distinctions of two types of glasses depending
on the value of q. The glassy samples are characterized by
the typical virtually frequency-independent elastic moduli
G0 (350 Pa<G0 < 800 Pa) and respective weakly fre-
quency dependent viscous moduli G00 that exhibit a broad
minimum (20 Pa<G00min < 55 Pa) [15]. For a small con-
centration of small stars, the system exhibits moduli G0 >
G00 and G0 	!0, characteristic of solid, glasslike behavior
[15–17]. As the density of the added small star increases,
there is a dramatic change in the mixture’s viscoelastic
response. The glass melts, and a fluid results, whose mod-
uli are weaker by orders of magnitude. A compilation of
rheological results obtained from the available samples of
different q and �2 is presented in Fig. 1 for both studied
functionalities of the large stars. In order to have a clear
representation of all results in one plot, only the data
closest to the glass-liquid boundaries are shown. The re-
sults suggest that a U-shaped melting line separates the
fluid (above) from the glass (below) states. This trend is
general, since it is independent of the big stars used.

Our theoretical analysis is based on a coarse-grained star
description employing effective interactions [5] in binary
star mixtures [18] with functionalities fi and corona diam-
eters �i, i � 1; 2, combined with MCT [8,9]. In the pure
star solution, MCT predicts a glass line at large f above an
f-dependent density [19], in agreement with experiment
[2]. The equilibrium structure factors Sij�k�, k � 1; 2, were
calculated by solving the two-component Ornstein-Zernike
equation [20] within the Rogers-Young closure [21]. The
dynamics was calculated using two-component MCT
[22,23].

Upon addition of the smaller stars, the partial static
structure factor S11�k� of the large ones shows a loss of
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structure, a phenomenon caused by the depletion-induced
softening of the repulsions between the big stars. At the
same time, the small-stars partial structure factor S22�k�
gradually develops growing peaks. These structural
changes result into melting of the glass at a q- and
f2-dependent density �melt

2 . Our theoretical results are
summarized in Fig. 2. In agreement with experimental
results, a characteristic U shape is found for the melting
curves at all studied f2. Above q � 0:4 for f2 � 64, and
q � 0:45 for f2 � 16 and 32, no melting is found for any
density of the small stars.

The U shape of the melting line points to the existence of
two distinct microscopic melting mechanisms. For a very
small size of the additives, a standard depletion mechanism
takes place. The osmotic pressure from the mobile, small
stars, which are free to diffuse in the matrix formed by the
big ones, leads to a reduction of the repulsive interactions
between the latter. As a consequence, the cages that stabi-
lize the glass are weakened, eventually breaking at a suffi-
ciently high small-star concentration, at which the system
melts. Since depletion is stronger at fixed �2 as q grows,
the melting curve has, in this regime, a negative slope in the
�q; �2� plane, generating the left arm of the U-shaped line.
However, as q further increases, the smaller stars become
themselves slower and they begin to actively participate in
the glass formation. At low additives concentration, the
latter become trapped in the voids left out of the glassy
matrix. Hence, two competing mechanisms are at work: As
before, the structure of the big stars is weakened by the
addition of the small ones, but, at the same time, the second
component becomes increasingly glassy. The onset of this
mechanism brings about a reversal of the slope of the
melting curve, since now the tendency of the small stars
1-2



0 0.1 0.2 0.3 0.4 0.5 0.6
q

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

’
G

/
’

G
0

experiments f
1
=270

experiments f
2
=128

MCT

0 0.2 0.4 0.6 0.8 1

ρ
2
/ρ

2
melt

4.5

5

5.5

6

6.5

7

7.5

8

’
G

01[ 
3

mc/nyd
2 ]

q=0.1
q=0.2
q=0.3
q=0.4
q=0.45

FIG. 3 (color online). Plot of the ratio G0=G00, where G00 is the
modulus of the system without additives, against size ratio q
close to melting. Theory refers to the case f2 � 32, while ex-
periments refer to a compilation of several measured elastic
moduli of star-star mixtures, obtained with different big and
small stars at various concentrations of the additives. Inset: De-
pendence of the elastic modulus G0 of the glass on �2 (f2 � 32).
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FIG. 2 (color online). Theoretical kinetic phase diagram of
binary star mixtures, calculated using MCT. The large-star
functionality and concentration are fixed at the values f1 �
270 and �1�

3
1 � 0:345. The diagram is shown for three different

functionalities f2 of the small stars. Circles: f2 � 16; squares:
f2 � 32; triangles: f2 � 64. The lines going through the calcu-
lated points are guides to the eye. The cartoons display local
arrangements in a single big-star glass with mobile small stars
(left) and in a double glass in which there is mutual caging of
both components (right).
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to soften the repulsion between the big ones is counter-
driven by their own opposing tendency to jam. As �2 grows
at fixed q, the small-star jamming cannot persist indefi-
nitely, since the direct repulsions between the additives
prevent them from occupying the same region of free
space. As a result, melting of the glass takes place. We
can distinguish between two different glassy states under
the U curve, one in which only the big stars are jammed
(low q) and one in which both components are arrested
(large q). We call the former a single-glass and the latter a
double-glass state.

The above interpretation is supported, first, by a com-
parison with the results obtained if a one-component MCT
treatment is adopted, in which the smaller stars are as-
sumed to form an ergodic fluid (dotted lines in Fig. 2). The
two approaches yield very similar results at small size
ratios, whereas the discrepancy becomes large at higher
q’s, signaling the tendency of the small component to
arrest. The deviation between the two approaches can
also be understood in terms of the scaling of the short-
time mobilities with size ratio [24]: As q! 1, the time-
scale separation between the two species disappears.

Further, we have calculated the elastic modulus G0

following Ref. [25]. In the inset in Fig. 3, we show the
theoretical results for G0, demonstrating that, for q 
 0:3,
G0 has a maximum at �2 � 0, whereas for the larger size
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ratio, q � 0:4, it has a minimum there. At small q, the
additives lower G0 through the softening of the big cages,
whereas at high q they lead to stiffening of the glass
through the fact that they are themselves driven to dynami-
cal arrest. In Fig. 3, theoretical and experimental results for
the normalized modulus G0=G00 are shown, where G00 	
500 Pa stands for the average value of the elastic modulus
of the big-star glass, without any additives. Experimental
results display the same trends predicted theoretically. For
small q, experimental values are much lower than the
theoretical ones, because MCT is not capable of taking
into account the vast discrepancy in the mobilities of the
two species in highly asymmetric mixtures. However, at
larger q, in a full binary regime where the theory works
best, the agreement between theory and experiments be-
comes almost quantitative.

Additional evidence for the fluidity of the small stars at
low q values and their jammed nature at high ones is
offered by the calculated nonergodicity factor f22�k�,
shown in Fig. 4. Whereas the big-star nonergodicity factor
f11�k� is rather insensitive to q, and remains roughly the
same in all glassy states, f22�k� shows a dramatic change.
For q 
 0:2, f22�k� is very small and its nonzero values are
confined to a very narrow, small k domain. Such non-
ergodicity factors are fully consistent with a mobile small
component [26–28]. At high q values, f22�k� has the
typical range of a fully arrested system.

The phenomenon of glass melting through polymer
addition has been observed in hard-colloid–polymer
(CP) mixtures [29,30]. The physics and implications of
this are, however, in our case very different. Whereas in the
CP case the solid melts due to the induction of short-range
1-3
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attractions on the colloids, which eventually drive the
formation of a reentrant, attractive glass, in our case effec-
tive attractions are completely absent. This fundamental
difference is witnessed by the fact that, in CP mixtures,
melting takes place only for very asymmetric size ratios,
q 
 0:1, whereas in the present case it persists up to q � 1.
The melting of the solid in CP mixtures requires the fluid-
ity of the added polymer [24]. To the contrary, for star
mixtures, the addition of a second component that becomes
increasingly glassy is capable of bringing about a melting
of the double glass. This is made possible by the crucial
role played by the softness of the interactions between
all species, which allows for the rearrangement of soft
cages, a mechanism absent in CP mixtures. In star-linear
mixtures, only the left arm of the U curve is seen experi-
mentally, the melting phenomenon ceasing altogether at
q � 0:5 [31]. There the linear chains form a transient
physical network, whereas stars are forced to maintain
their spherical shape.

Our findings are general, since they are based on the
softness of the effective interactions involved. A large class
of composite soft materials, such as charge-stabilized col-
loidal dispersions, microgels, dendritic polymers, or self-
organized micelles, are characterized by soft effective
interactions. Charged suspensions and dusty plasmas, for
instance, can be described by Yukawa potentials whose
decay length and strength can be tuned by controlling the
charges and the screening microions. Therefore, they
should be amenable to manipulations of their rheology
along the lines reported here. Functional versatility and
viscosity control are desired material properties in medical,
pharmaceutical, and coating applications as well. Control-
ling these products near vitrification transitions provides a
means to achieve the desired properties variation.
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