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Phase Separation in Jahn-Teller Systems with Localized and Itinerant Electrons
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The phase diagram for doped manganites and related compounds is analyzed in terms of the Kondo-
lattice model taking into account an interplay between electrons localized due to lattice distortions and
those in the band states. It is shown that the number of itinerant charge carriers can be significantly lower
than that implied by the doping level. The competition between the homogeneous (ferromagnetic or
antiferromagnetic) and phase-separated states is discussed and a strong tendency to the phase separation
was revealed for a wide doping range.
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Phase separation phenomena play a fundamental role in
the physics of strongly correlated electron systems, espe-
cially in manganites and related compounds [1–3]. It is
commonly believed now that the nature of the colossal
magnetoresistance effect is closely related to the phase
separation, or to speak more generally, to the formation
of inhomogeneous states. The most widely discussed type
of phase separation is the formation of nanoscale inhomo-
geneities such as ferromagnetic (FM) metallic droplets
(magnetic polarons or ferrons) located in an insulating
antiferromagnetic (AF) matrix. These droplets are formed
as a result of a self-trapping of charge carriers. Such a type
of phase separation was first predicted by Nagaev for
magnetic semiconductors [4]. It is often taken for granted
that all charge carriers arising due to doping take part in the
formation of FM droplets. However, such an approach can
lead to discrepancies with experiment. For example, the
size of the droplet turns out to be less than the lattice
constant to fit the experimental data on conductivity of
La1�x MgxMnO3 as was estimated in Ref. [5]. This implies
that such a kind of phase separation could exist only for
low doping levels, especially in the insulating state. At the
same time, the analysis of experimental data demonstrates
that the doping level and the number of self-trapped car-
riers can differ drastically [6]. Therefore, the phase sepa-
ration manifests itself in a wide region of the phase
diagram even at a rather high level of doping [7]. The
nature of this difference still remains unclear. Here, we
discuss a model relating the doping level and the number of
charge carriers.

We consider the picture characteristic of the systems
with Jahn-Teller ions with an interplay between electrons
localized due to lattice distortions and those in the band
states. The situation is typical for manganites and could be
described by the Kondo-lattice model in the double ex-
change limit with an account taken for the Jahn-Teller (JT)
distortions. Starting from the seminal Letter [8], such a
mechanism was widely discussed in the literature [7,9,10].
Note also Ref. [11], where the localization arises due to AF
fluctuations. In Refs. [12,13], this approach was used to
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analyze the phase diagram of doped manganites. However,
the possibility of phase separation was not considered and
the difference between the doping level and the density of
the itinerant charge carriers was not explicitly addressed.
We start with a general two-band Kondo-lattice Hamil-
tonian, outline the main assumptions to simplify the model,
analyze possible homogeneous states, discuss the compe-
tition between the homogeneous and phase-separated
states, calculate the phase diagram, and briefly discuss
the effects of temperature and magnetic field.

Model.—We start from the assumption that in the sys-
tem with JT ions, an electron can be either localized at the
lower level with the energy gain �JT or remain at the higher
level decreasing its energy due to band broadening. So,
there exists a competition between the localization and the
delocalization. We describe the system with localized and
band electrons using the Hamiltonian
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Here, ayna�; ana� denote creation and annihilation opera-
tors for eg electrons at site n with orbital index a (3z2 � r2

or x2 � y2) and spin projection �, Sn is a local (classical)
spin formed by spins of t2g electrons, ~� are the Pauli
matrices, and Q2n; Q3n are normal modes of vibration of
MnO6 octahedron. The terms in Hel correspond, respec-
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tively, to the kinetic energy of eg electrons and Hund’s rule
interaction between eg electrons and local spins. The sec-
ond term in H is the Heisenberg AF (J0 > 0) exchange
between local spins. HJT describes the JT interaction be-
tween eg electrons and vibrational modes for MnO6 octa-
hedra, where K is the elastic energy and g is the electron-
lattice coupling constant. Hel-el is the on-site Coulomb
repulsion between eg electrons with the same and different
orbital indices, where the bar above a or � means not a or
not �, respectively.

In the limit JH ! 1 characteristic of manganites, we
can assume that the spin of eg electrons is parallel to Sn.
This implies the transformation of ana� to operators cna
with spin projection�1=2 onto the direction of Sn and also
to the transformation of hopping amplitudes: tabnm !
tabnm cos��nm=2�, where �nm is the angle between Sn and
Sm [14]. The JT effect leads to the splitting of the double-
degenerate eg level. As in Ref. [12], we assume that there
are two types of eg electrons in the system: (i) ‘‘localized’’

(l, t�l�nm ! 0) electrons, which produce maximum splitting
of the eg level with the energy gain �g2=2K; (ii) ‘‘band’’

(b) electrons with nonzero hopping integrals t�b�nm producing
smaller distortions of MnO6 octahedra. The effective
Hamiltonian then reads
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where operators cyn and cn correspond to b electrons and
J � J0S2. In Eq. (2), the term with chemical potential � is
added. The summation in the first and the third terms in
Heff is performed over nearest neighbors. The effective on-
site Coulomb repulsionU in Eq. (2) can differ fromU2, but
it has the same order of magnitude (� 5 eV). �JT is the JT
energy gain for l electrons counting from the center of the
b-electron band. Our main assumption is that the effective
parameters t and �JT do not depend on doping level x.
Preliminary calculations demonstrated that the dependence
of t and �JT on x explicitly taken into account could not
significantly affect the obtained results. The number of
localized, nl, and band, nb, electrons per lattice site obeys
an obvious relation nb � nl � 1� x.

The suggested model allows us to describe the competi-
tion between itinerant and localized electrons as well as the
phase separation using a few fitting parameters. So, it can
be considered as a minimal model for the physics we wish
to outline. Note that Eq. (2) is rather similar to the widely
studied Falicov-Kimball model [15], which also exhibits
the phase separation [16].

Homogeneous states.—In the homogeneous FM
state, �nm � 0. The energy spectrum was calculated
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by the Hubbard I approximation in the equation of motion
for b-electron Green functions Gb�n;n0; t� t0� �
�ihTcn�t�c

y
n0
�t0�i. In the frequency-momentum represen-

tation
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and "�k� is the energy spectrum at U � 0. For a simple
cubic lattice "�k� � �2t�coskx � cosky � coskz�. If nb 

0:5, at any realistic temperature the upper subband (4) is
empty for any doping level.

The numbers of localized and band electrons depend on
the relative positions of � and �JT. If �<��JT, then nl �
0 and nb � 1� x. With the increase of nb, � becomes
equal to��JT, the further growth in the number of itinerant
charge carriers is unfavorable, nl is nonzero, and � is
pinned at the level ��JT. Using the relation for the density
of states �0�E� � ��

�1Im
R
Gb�k; E� i0�d3k=�2��3,

we obtain in the limit U� w0 � zt

nb �
Z ��JT

�w0�1�nl�
dE�0�E�

� �1� nl�
Z �1

0

d�
�

sin�w0�� � sin�� �JT

1�nl
�

�
J3

0

�
2w0�
z

�
;

(5)

where z � 6 is the number of nearest neighbors in the
cubic lattice and J0 is the Bessel function. The last integral
corresponds to "�k� for the simple cubic lattice.
Equation (5) and condition nb � nl � 1� x define nb as
a function of x. In our model, there are two critical values
of x, x1 and x2. If x < x1 � �JT=w0, then nb � 0, as it
readily follows from Eq. (5). In this case, the homogeneous
FM state does not exist. At x � x2 the number of localized
electrons vanishes. The value of x2 can be found from
Eq. (5) at nl � 0. The dependence of nl and nb on x is
shown in Fig. 1 for typical parameters of the model. Note
that nb does not exceed 0.5 as was assumed above.

At x1 < x< x2, the energy per site is equal to EFM �
Ekin � �JTnl � zJ, where

Ekin �
Z ��JT

�w0�1�nl�
dEE�0�E� (6)

is the kinetic energy of b electrons. At x > x2, we have
nl � 0, and ��JT in Eqs. (5) and (6) is substituted by the
chemical potential �. Thus, EFM � Ekin��� � zJ, with �
determined from Eq. (5). Function EFM�x� is shown in
Fig. 2. For a spherical Fermi surface (small band filling,
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FIG. 1. nl (solid line) and nb (dashed line) vs doping level x;
�JT=w0 � 0:05; j � zJ=w0 � 0:005.
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nb � 1), Ekin can be written as
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In the homogeneous AF state, we have �nm � �. At
high values of JH, the formation of itinerant electrons is
suppressed and the energy of the AF phase is EAF �
��JT�1� x� � zJ; see the dashed line in Fig. 2. We can
see that the AF state is favorable in energy both at small
values of x and near x � 1. Note that these results are
obtained without taking into account the charge ordering,
which could be an additional source of localization at
x * 0:5.

The uniform canted state could be studied by the same
method as FM and AF states accounting that 0< �nm <�.
However, the analysis shows that in the parameter range
characteristic of manganites (U > JH � t� J), the uni-
form canted state is unfavorable. It is more so if we take
into consideration a possibility of the phase separation,
which we discuss below.

Phase separation.—Here we discuss the possible sepa-
ration of the system into FM regions containing itinerant
electrons and AF regions with nb � 0. The energies of FM
and AF homogeneous states have minima at x � x2 and
x � 0, respectively; see Fig. 2. This indicates that the
effective doping level in the FM state, xf, and in the AF
FIG. 2. The energy of the system in FM (solid line) and AF
(dashed line) states vs doping level x; �JT=w0 � 0:05; j �
zJ=w0 � 0:005.
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state, xa, could be different obeying the condition pxf �
�1� p�xa � x, where p is the FM phase content. In the
calculation of the energy of the phase-separated (PS) state,
we should take into account the Coulomb term due to the
redistribution of the charge density and the finite size of
inhomogeneities. A due account of this contribution allows
one to find a characteristic size of the inhomogeneities
[17]. Both additional terms depend on the structure of the
inhomogeneous state. Here, we use the simplest geometry
of the PS regions; i.e., at p < 0:5, we have the spheres of
the FM phase embedded into the AF matrix, and at p > 0:5
AF spheres are within the FM matrix.

To calculate the Coulomb energy, we divide the system
into spherical cells of radius Rc. In the center of the cell we
have the FM or AF sphere of radius Rs, which is defined by
the electroneutrality condition: Rs � p1=3Rc for p < 0:5
and Rs � �1� p�1=3Rc for p > 0:5. Following Ref. [17],
we can write the Coulomb energy per site Ec at p < 0:5 as

Ec �
2�e2

5�d
�xf � xa�2

�
Rs
d

�
2
p�2� 3p1=3 � p�; (8)

where � is the permittivity and d is the lattice constant. For
p > 0:5, we should replace xf $ xa and p! 1� p.

Since in the PS state b electrons are confined within a
finite region, we should take into account the corrections to
the electron density of states due to the dimensional quan-
tization. At p < 0:5, it is convenient to express the corre-
sponding contribution to the energy in the form

Es � p
3d
Rs
��xf�: (9)

For p > 0:5, we should replace p by 1� p. Note that
��xf� does not depend explicitly on xa since there are no
itinerant electrons in the AF phase. The value of ��xf� was
calculated for small d=Rs ratios following the approach of
Refs. [18,19] for the simple cubic lattice. Within the order
of magnitude, ��xf� can be estimated as tn4=3

b �xf�.
Terms (8) and (9) determine an optimum size of inho-

mogeneities. Minimizing Ecs � Ec � Es with respect to
Rs, at p < 0:5 one obtains

Rs � d
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where u � e2=�d. At p > 0:5, we should replace p by 1�
p and use the corresponding value of ��xf�. Our calcula-
tions are applicable if the inhomogeneity contains a rela-
tively large number of lattice sites. For characteristic
values of parameters we find Rs=d � 1:5� 3.

To find concentrations of each phase, it is necessary
to minimize the total energy EPS � pEFM�xf� � �1�
p�EAF�xa� � Ecs�xf; xa; p� with respect to xf and xa. To
find the range of doping where the PS is favorable, we
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FIG. 3. The energy of the system vs doping level x. The solid
line corresponds to the homogeneous (AF at x < x
 or FM at
x > x
) state. The dashed lines correspond to energies of the
phase-separated state calculated at u=w0 � 2; 3=2; 1; 1=4; 0 from
up to down. Other parameters are �JT=w0 � 0:05 and j �
zJ=w0 � 0:005. The regions of stability of AF, FM, and AF-
FM phase-separated states are shown at u=w0 � 3=2.
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compare EPS with energies of homogeneous states. In
Fig. 3, we plot EPS vs x at different values of u. The
energies of the homogeneous states are also shown. This
figure demonstrates that in the limit u! 0 the PS state is
favorable within the 0< x< x2 doping range. When u is
increased, the range of phase separation gradually narrows
and disappears at x � x
, where EFM � EAF. A homoge-
neous state can correspond to a local energy minimum, but
in our model, it can appear only due to the intersite
Coulomb interaction related to the charge redistribution.
If this interaction is weak, a homogeneous state becomes
absolutely unstable. The situation is similar to the phase
separation in the usual Kondo-lattice model where the
compressibility of a homogeneous state is negative [3].

Conclusions.—A ‘‘minimal model’’ dealing with the
competition between the localization and metallicity in
manganites was formulated. We demonstrated that the
number of itinerant charge carriers can be significantly
lower than that implied by the doping level. A strong
tendency to the phase separation was revealed for a wide
range of intermediate doping concentrations vanishing at
low and high doping levels. These predictions are in agree-
ment with the experimentally found phase diagram of
manganites [2,7]. The latter result, alongside with the
calculated size of ferron, could serve as a key to an ade-
quate description of the transport properties of manganites
that could not be done in the framework of the single-band
models [6]. As it was mentioned above, Hamiltonian (2) is
analogous in several aspects to the Falicov-Kimball model
used in the analysis of heavy-fermion materials. So, we
believe that our approach could be applicable not only to
manganites but also to a wider class of strongly correlated
electron systems.

Our minimal model does not take into account the
possibility of charge ordering, which could change the
results for x near 0.5. Note that the canted state was
predicted in Ref. [13] for charge-ordered phases, but the
possibility of phase separation was not considered there.
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The results were obtained at zero applied magnetic field H
and temperature T, but our approach can be directly gen-
eralized to finiteH and T. It is evident that an increase inH
favors the FM state. The effect of temperature manifests
itself mainly in the change of the effective hopping integral
t due to the polaron band narrowing [20,21] and the en-
tropy term in the free energy due to thermal fluctuations of
local spins. When the entropy term dominates over the
polaron band narrowing, FM regions can exist in the
paramagnetic surrounding and this situation can be also
described within the model.
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