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Orbital Polarization in Itinerant Magnets
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We propose a parameter-free scheme of calculation of the orbital polarization (OP) in metals, which
starts with the strong-coupling limit for the screened Coulomb interactions in the random-phase
approximation (RPA). For itinerant magnets, RPA can be further improved by restoring the spin
polarization of the local-spin-density approximation through the local-field corrections. The OP is then
computed as the self-energy correction in the static GW method, which systematically improves the
orbital magnetization and the magnetic anisotropy energies in transition-metal and actinide compounds.
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An electron in solid can carry spin (MS) and orbital (ML)
magnetic moment. For weakly correlated systems, the
problem of spin magnetism alone can be formulated in
the fully itinerant fashion, meaning that the effect of other
electrons onto a given one can be described by an
exchange-correlation field (or spin polarization). The field
is typically evaluated in the model of homogeneous elec-
tron gas, in the basis of plane waves, which is a limiting
case of the extended Bloch waves. This constitutes the
ground of the Kohn-Sham (KS) formalism within local-
spin-density approximation (LSDA) [1], which works ex-
ceptionally well for the magnetic spin properties of many
transition-metal and actinide compounds. They form an
extended group of what is currently called the ‘‘itinerant
electron magnets.’’

The orbital magnetism is an atomic phenomenon. In the
majority of cases, it is driven by the spin-orbit interaction
(SOI), being proportional to the gradient of the one-
electron potential, rV̂, which is large only in a small
core region close to the atomic nucleus. Furthermore, the
angular momentum operator, L̂z, does not commute with
V̂, and ML is not an observable quantity, unless it belongs
to the same core region where V̂ is spherically symmet-
rical. Therefore, it is more natural to formulate the problem
in the basis of Wannier functions f��g (� being a joint
spin-orbital index), constructed for the magnetic d or f
electrons and well localized around each atomic site [2].
Then, the orbital moment ML � TrLSfL̂

zn̂g is specified by
the local density matrix n̂ �k n�� k (TrLS being the trace
over spin and orbital variables), where n�� �

P
inid�id

y
�i,

d�i � h��j ii is the projection of KS eigenstate  i onto
��, ni is the KS occupation number corresponding to the
eigenvalue "i, and the joint index i stands for the spin,
band, as well as the position of the k point in the first
Brillouin zone (BZ).

In an analogy with the spin polarization for itinerant
magnets, one can think of an orbital polarization (OP): an
exchange-correlation field in KS equations, which couples
with ML. Despite a genuine interest in the problem and
wide perspectives of their potential applications, the theo-
ries of OP in metals are still in a developing ‘‘semiempir-
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ical’’ stage, as they largely depend on the input parameters,
which are typically chosen to fit the experimental data.
Although the majority of researchers agree that OP is
controlled by intra-atomic interactions, which are strongly
screened in metals, the details of this screening as well as
the form of the OP itself remains to be a largely unresolved
and disputed problem [3–8].

Therefore, there are two important questions that we
address in this Letter: (i) How are the bare on-site inter-
actions u���� � h����j1=r12j����i screened in metals?
What is the main mechanism of this screening? (ii) Is there
any simple and reliable way to evaluate this screening in
ab initio calculations of OP?

In the atomic limit, the full matrix û �k u���� k for the
d or f shell is controlled by a small number of Slater
integrals fFkg. Then, an old empirical rule states that in
metals, the screening affects mainly F0, which contributes
to the Coulomb matrix elements u����. Other Slater inte-
grals, which control the exchange and nonsphericity of
Coulomb interactions, do not change so much [9].

First, we argue that the same type of screening can be
naturally obtained in random-phase approximation (RPA),
in the fully deterministic fashion. The screened interaction
in RPA [10,11],

Û�!� � �1� û P̂�!���1û; (1)

depends on the polarization P̂ �k P���� k , which is
treated in the approximation of noninteracting KS quasi-
particles:

PRPA
�����!� �

X
ij

�ni � nj�d
y
�jd�id

y
�id�j

!� "j � "i � i��ni � nj�
: (2)

The ! dependence of P̂ contributes mainly to the redis-
tribution of the spectral density, whereas the !-integrated
ground-state properties are controlled by Û � Û�0�.
Therefore, we consider only the static case, which de-
scribes the screening of û caused by the relaxation of
f ig upon removal or addition of an electron in terms of
the perturbation-theory expansion [12].
5-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.267205


PRL 95, 267205 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
The simplest toy model, which illustrates the physics,
may consist of two spin-polarized bands, formed by yz (1)
and zx (2) orbitals. The model is compatible with the
orbital magnetization in the h001i direction. Adopting the
following order of orbitals (within one spin channel):
������ � 11, 22, 12, and 21, it is easy to show that

û �

u u0 0 0
u0 u 0 0
0 0 0 j
0 0 j 0

0
BBB@

1
CCCA; (3)

where u�F0� 4
49F

2� 36
441F

4, j � 3
49F

2 � 20
441F

4, and u0 �
u� 2j. Because of the orthogonality of the yz and zx
orbitals, the Coulomb (�� � 11; 22) and exchange (�� �
12; 21) matrix elements are fully decoupled from each
other. In order to illustrate the main idea of RPA screening,
P̂ can be taken in the form P���� � P������ [2], which
yields U��u��u2�u02�P�=��1�uP�2��u0P�2�, U0 �
u0=��1� uP�2 � �u0P�2�, and J � j=�1� jP�. There is a
certain hierarchy of bare interactions, and for many metals
the screening of u and j falls in the strong- and weak-
coupling regimes, respectively, so that ujPj 	 1 while
jjPj 
 1 [12]. This yields U ’ �1=�2P� � 2J, U0 ’
�1=�2P�, and J ’ j. Thus, this is the inverse polarization,
which plays a role of effective Coulomb interaction in
metals [12]. U is strongly screened and does not depend
on the value of bare interaction. On the other hand, J is
insensitive to the screening. The multiplier 1=2 in the
expressions for U and U0 stands for the orbital degeneracy.
The result can easily be generalized for an arbitrary num-
ber of orbitals M (M � 5 and 7 for d and f electrons,
respectively), which yields U0 ’ �1=�MP� [2]. Then, in
order to justify the validity of the strong-coupling limit, it
is sufficient to have a milder condition: uMjPj 	 1.

All these trends are clearly seen in the first-principles
calculations for realistic materials shown in Fig. 1 [13],
where all Slater integrals except F0 were calculated inside
atomic spheres, and F0 was treated as a parameter. When
F0 increases, the effective interactions quickly reach the
asymptotic limit F0 ! 1, where Û is fully determined by
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FIG. 1. Effective Coulomb and exchange interactions in RPA
versus bare Slater integral F0 for 3d states in bcc Fe and 5f
states in uranium sulfide. The symbols denote the matrix ele-
ments corresponding to different representations of the point
group Oh. The calculations have been performed in the ferro-
magnetic state without spin-orbit coupling.
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details of the electronic structure, through the polarization
P̂, and do not depend on F0. This removes the main
ambiguity with the choice of interaction parameters for
metallic compounds. Since P̂ depends on the local environ-
ment in solid, the screened interactions can be different for
different types of Wannier orbitals (e.g., eg and t2g for d
electrons in the cubic environment).

Thus, OP in the itinerant magnets can be naturally
evaluated in the framework of a universal parameter-free
scheme based on the strong-coupling limit for the matrix of
effective Coulomb interactions Û. The exchange-
correlation self-energy, incorporating the effects of OP,
can be calculated within static approximation in the GW
method [10], obtained after replacing Û�!� by Û�0�:

��� � �
X
��

U����n��: (4)

The proper correction to the KS Hamiltonian in LSDA is
controlled by �n̂ � n̂� 1

2M

P3
r�0 TrLSf�̂rn̂g�̂r. It is ob-

tained after subtracting the charge (r � 0) and spin (r � 1,
2, and 3) density elements of n̂, which are already included
in the LSDA part (�̂0 being the unity matrix, and �̂1, �̂2,
and �̂3 being the Pauli matrices of the dimension 2M).
Thus, in the actual calculations we use the change of the
self-energy ��̂, obtained after replacing n̂ by �n̂ in
Eq. (4). It was incorporated into KS equations via projector
operators,

P
��j��i����h��j, and the problem was

solved self-consistently with respect to �n̂.
The validity of the strong-coupling approach is well

justified. So, the effective Coulomb interaction between
t2g electrons in bcc Fe can be estimated in RPA as 1.50,
1.47, and 1.37 eV for F0 � 1, 21 eV (the bare Slater
integral inside the atomic sphere), and 4.5 eV (the value
obtained in the constraint LSDA, which includes the
screening by the sp electrons [12]), respectively. Thus,
even if one takes the lowest estimate F0 � 4:5 eV, the
additional approximation F0 ! 1within RPAwould over-
estimate U by less than 10%. For f electrons, this error is
even smaller due to the higher orbital degeneracy.

However, this is not the main source of the error. A more
fundamental problem is related to the RPA itself, which
typically underestimates the spin polarization �RPA �

TrLSf�̂�̂3g, meaning that even for the upper limit in
RPA, corresponding to F0 ! 1, the effective Coulomb
interaction is overscreened and underestimated. For ex-
ample, had we replaced the spin part of LSDA by the
one of RPA, the spin moment would be underestimated.
Obviously, this would destroy the most attractive point of
LSDA for itinerant electron magnets. Therefore, there is
certain inconsistency in the RPA approach.

RPA can be improved by introducing the local-field
factor g, which incorporates the effects of the exchange-
correlation hole for the polarization matrix: �P̂��1 �

�P̂RPA��1 � ĝ. Other corrections can be formally reduced
to ĝ [14]. Our goal is to find such a correction to the ma-
5-2
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trix of effective Coulomb interactions, which after substi-
tution in Eq. (4) would yield the same spin polarization as
LSDA (�LSDA). In order to do so, we search ĝ in the form
of the local diagonal matrix: g���� � g������. Then, the
asymptotic part of the effective Coulomb interaction and
the self-energy can be easily recalculated using Eqs. (1)
and (4), respectively, and the unknown parameter g is
obtained from the condition TrLSf�̂�̂3g � �LSDA, which
is solved self-consistently together with the KS equations.
In the following, this method is referred to as corrected
RPA (c-RPA).

In ferromagnetic transition metals, ML is small and
typically regarded as a small perturbation to the spin-
dependent properties. MS and ML can be measured sepa-
rately using the gyromagnetic ratios, the neutron scatter-
ing, and the x-ray magnetic circular dichroism (XMCD)
[15] (Fig. 2). Despite an apparent simplicity, LSDA en-
counters a wide spectrum of problems for bcc Fe, hcp Co,
and fcc Ni. We argue that many of them can be systemati-
cally corrected by applying consequently RPA and c-RPA
techniques. LSDA has a certain tendency to overestimate
MS in bcc Fe and underestimate ML, while RPA and
especially c-RPA substantially improve the LSDA descrip-
tion and yield a good agreement with the experimental
data. The values of MS (ML) obtained in LSDA, RPA,
and c-RPA are 2.26 (0.04), 2.21 (0.05), and 2.20 (0.06)
�B, respectively, to be compared with the experimental
moments of 2.13 (0.08) �B [5]. The hcp Co has the largest
orbital moment among pure transition metals (ML �
0:14�B), which is strongly underestimated in LSDA
(ML � 0:08�B). The situation is substantially improved
in RPA (ML � 0:10�B) and c-RPA (ML � 0:11�B). The
fcc Ni is a rare example of ferromagnetic systems for
which ML � 0:05�B is well reproduced already in
LSDA. Both RPA and c-RPA preserve this good feature
of LSDA and do not substantially change ML. However,
they do change the electronic structure of fcc Ni. Namely,
the form of the Fermi surface (FS) of fcc Ni has been
intensively discussed in the context of the magnetocrystal-
line anisotropy energy (MAE). It was argued that the
reason why LSDA fails to reproduce the correct h111i
direction of the magnetization is related to the second
pocket of the FS around the X point of the BZ, which is
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FIG. 2 (color online). Spin (light blue area), orbital (dark red
area), and total (full hatched area) magnetic moments in ferro-
magnetic transition metals. The experimental data are taken
from Ref. [5]. The inset shows the Fermi surface of fcc Ni in
the c-RPA approach.
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not seen in the experiment [7]. The experimental FS can be
reproduced in the LSDA�U approach by treating U as an
adjustable parameter [7]. Therefore, it is important that the
same problem can be successfully resolved in both RPA
and c-RPA, without any adjustable parameters. The calcu-
lated FS, which reveals only one pocket around theX point,
is shown in the inset of Fig. 2.

The uranium pnictides (UX, where X � N, P, As, Sb,
and Bi) and chalcogenides (X � S, Se, and Te) are some of
the most studied actinide compounds. They crystallize in
the rock-salt structure. All chalcogenides are ferromagnets,
whereas the pnictides have a type-I antiferromagnetic
structure, which can also transform into a multi-k struc-
ture. The basic difference from the transition metals is that
ML in actinides, which can be extracted from the analysis
of magnetic form factors [4,16], is very large and typically
dominates over MS. According to the third Hund rule, MS
and ML in UX are coupled antiferromagnetically. As the
U-U distance increases, the U�5f� states become more
localized, and all magnetic moments increase monoto-
nously from UN to UBi and from US to UTe (Fig. 3).
UN and US are usually classified as itinerant magnets.
However, the role of intra-atomic correlations is expected
to increase for the end-series compounds. Obviously, the
real ab initio scheme does not know whether the system is
itinerant or not. Therefore, it is important to test both RPA
and c-RPA methods for all considered compounds in order
to see how they will work for materials with different
characters of the 5f electrons. The orbital moments are
systematically underestimated in LSDA. The error is really
large so that the total magnetic moments are typically off
the experimental values by 20%–50%. RPA systematically
improves the LSDA description. However, it is not enough,
and for many uranium compounds it is essential to go
beyond RPA. For these purposes, c-RPA works exception-
ally well and further improves the RPA description.
Particularly, we note an excellent agreement with the
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FIG. 3 (color online). Magnetic moments in uranium pnictides
(top) and chalcogenides (bottom). The pnictides (chalcogenides)
have been computed in the type-I antiferromagnetic (ferromag-
netic) structure with h001i (h111i) direction of the magnetization.
The symbol ‘‘exp’’ shows the results of neutron diffraction,
which were separated into spin and orbital contributions for
US (Ref. [4]) and UAs (Ref. [16]). Other notations are the
same as in Fig. 2.

5-3



-4
-3
-2
-1

0
1
2
3

-15

-12

-9

-6

-3

0
0.0

0.5

1.0

1.5

2.0

0.0
0.1
0.2

0.3
0.4
0.5

0.0
0.2
0.4

0.6
0.8
1.0

expc-RPARPA

 
∆

E
 (

m
eV

/f
.u

.) LSDA

CoPt

Co-atom

c-RPARPALSDA
∆

M
L
 (

10
-2
 µ

B
)

 

Pt-atom

0
2
4

6
8

10

exp
c-RPA

RPA

 

∆
E

 (
m

eV
/f

.u
.)

LSDA

US

c-RPA
RPA

LSDA

∆
M

L
 (

10
-2
 µ

B
)  

U-atom

Co-atom
c-RPARPALSDA

M
ag

ne
ti

c 
M

om
en

ts
 (

µ B
)

 Pt-atom
c-RPARPALSDA

M
ag

ne
ti

c 
M

om
en

ts
 (

µ B
)

FIG. 4 (color online). Magnetocrystalline anisotropy energy
(�E) and the anisotropy of orbital magnetization (�ML). For
each quantity, the anisotropy is defined as the difference between
values corresponding to the h100i and h001i (CoPt), and h100i
and h111i (US) directions of the magnetization. The experimen-
tal values are taken from Ref. [8] (CoPt, at 293 K) and Ref. [18]
(US). For CoPt, the values of MS and ML in the h001i direction
are shown in the left part of the figure. Other notations are the
same as in Fig. 2.
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experimental data for X � S, P, and As. For the end-series
compounds (X � Te, Sb, and Bi) the agreement is not so
good, signaling the necessity of more radical improve-
ments, involving both orbital and spin polarization of
LSDA. However, even for these complicated systems, c-
RPA is a big step forward over conventional LSDA.

Finally, let us discuss applications for the MAE. We
consider two characteristic examples: CoPt and US. The
ordered tetragonal CoPt alloys are promising candidates
for magnetic recording applications. An intriguing point is
that, although LSDA underestimates ML, MAE is repro-
duced surprisingly well (Fig. 4) [8]. Therefore, the ‘‘cor-
rect’’ OP in CoPt should affect only ML. This requirement
is well satisfied in both RPA and c-RPA. The orbital mo-
ments systematically increase in the direction LSDA!
RPA! c-RPA to reach MCo

L � 0:14�B and MPt
L �

0:07�B [17]. The anisotropy of ML also increases (mainly
at Co sites). However, the MAE does not change so much
because of the large cancellation of the exchange-
correlation energies associated with Co and Pt sites [8].

US has the largest MAE among cubic compounds [18],
which is underestimated in LSDA. The situation is cor-
rected in c-RPA, at least qualitatively, due to the change of
the exchange-correlation energy. It is curious that MAE
‘‘anticorrelate’’ with the anisotropy of ML, which de-
creases in the direction LSDA! RPA! c-RPA.

In summary, we have argued that the problem of OP in
metals can be naturally formulated ‘‘from the first prin-
ciples,’’ by considering the strong-coupling limit for the
screened Coulomb interactions. In the present work, the
screened Û was computed only once: in LSDA and without
SOI. An important extension would be the self-consistent
calculation of Û, which would incorporate the effects of
26720
OP into the screening. (i) It could improve the description
of some itinerant actinide compounds (e.g., UN) for which
the spin polarization is small, and the screening is strongly
influenced by the SOI. (ii) Since the OP removes the d and
f states from the Fermi level, the screening is expected to
decrease. This could extend the applicability of the pro-
posed method for materials with more localized 5f and 4f
electrons.
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