
PRL 95, 266403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance
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Mott’s metal-insulator transition at an interface due to band bending is studied by the density matrix
renormalization group approach. We show that the result can be recovered by a simple modification of the
conventional Poisson’s equation approach used in semiconductor heterojunctions. A novel mechanism of
colossal electroresistance is proposed, which incorporates the hysteretic behavior of the transition in
higher dimensions.
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A strongly correlated electron system (SCES)—a group
of materials in which the effect of Coulomb repulsion is
large—is one of the major candidates on which the next-
generation electronics may be built [1–8]. This strong hope
put onto SCES electronics stems from the richness of its
phase diagram [9]: Various electronic and magnetic phase
transitions are reported with high sensitivity to external
conditions. Inside electric devices, the electrons behave
collectively, so the high sensitivity of SCES may lead to
drastic functionalities.

Yet, SCES electronics faces a strong conceptual barrier
to widespread acceptance and application, since it is es-
sentially many body where the useful concepts such as
band structure are believed to fail. It is expected to be the
case especially at the interfaces. In this Letter, we study
interface Mott transition near an interface between a metal
electrode and SCES in terms of the density matrix renor-
malization group (DMRG) method [10]. Surprisingly, we
found that the conventional band bending picture based on
Poisson’s equation is valid with a small modification
[Eq. (3)]. Namely, the conventional concepts in semicon-
ductor devices are still useful and valid to design the SCES
devices. As an application, we propose a novel mechanism
of the colossal electroresistance (CER), i.e., the large
switching of resistance.

Among many possibilities for industrial applications,
perhaps CER in SCES heterostructures is closest to real-
ization, e.g., nonvolatile resistance random access memo-
ries (RRAM) [1]. The device consists of a film of
perovskite manganite such as Pr1��Ca�MnO3, � � 0:3
(PCMO), which is a hole-doped Mott insulator, sand-
wiched by two metallic electrodes. The current-voltage
curve shows large hysteresis at room temperature, where
the resistivity of the on and off states differ by a large
factor. Although this effect has been explored in details [2–
6], the understanding of the mechanism is still missing.
Baikalov et al. pointed out from multilead resistance mea-
surements that the switching takes place at the interface
[5]. Then, Sawa et al. reported that the CER behavior
depends on the work function of the electrode metal [6].
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They interpreted the I-V characteristics using a Schottky
contact model (metal or p-type semiconductor) accompa-
nied with an interface state. Another mechanism was pro-
posed by Rozenberg et al. [11].

The mechanism of CER we propose here does not
assume any interface states but attributes the large non-
linearity of the I-V characteristics to interface Mott tran-
sition, where a layer of Mott insulator blocks the current. In
dimensions higher than one, the transition is first order, and
the width of the Mott insulator layer depends on how the
voltage is changed. This explains the hysteretic behavior of
the I-V characteristics.

The Letter consists of two parts. We first study a one-
dimensional model of a metal-SCES interface using
DMRG combined with Poisson’s equation. We show that
interface Mott transition can be understood on the basis of
local equilibrium, i.e., the electric state is determined by
the local value of the potential. Then, we explore the
hysteresis loop of the I-V characteristics on a phenomeno-
logical basis assuming the hysteretic density-potential
curve for a system in higher dimensions. Along with the
mechanism of CER, another interesting consequence of
interface Mott transition is proposed: A quantum well
structure emerges spontaneously [Fig. 1(a)] at the interface
of a hole (electron) doped Mott insulator and an electrode
with a small (large) work function. Our results may lead to
fabrication of clean 2D metallic systems analogous to the
high electron mobility transistor in semiconductor physics.

DMRG study of a 1D interface.—We start with the one-
dimensional model of a metal-SCES interface on a lattice
with total Hamiltonian

Htot � Helc �HSCES �Hjnc; (1)

where the electrode Helc��t
P
�
PL=2�1
i�1 �cyi�1�ci��H:c:�

and SCES HSCES � �t
P
�
PL�1
i�L=2�1�c

y
i�1�ci� � H:c� �PL

i�L=2�1�Uni"ni# � Vini� is connected by a junction

Hjnc � �t
P
��c

y
L=2�1�cL=2� � H:c:�. t is the hopping ele-

ment, L the total size of the system with the interface at the
center, and U denotes the on-site Coulomb repulsion (for a
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FIG. 1. Electron density n�x� (upper panel) and potential V�x�
(lower panel) in a metal-SCES interface with (a) V1 � �2:25,
(b) V1 � �1, and (c) V1 � �0:5 (U=t � 4, n� � 0:7, � �
0:043, and L � 100). In each panel, a description of each region
is given in the top where dark (white) regions are insulator
(metal), e.g., band insulator (BI), metal (M), and Mott insulator
(MI). The schematic picture in the left-lower space describes the
bending of the upper (lower) Hubbard band UH (LH) near the
interface. EF is the Fermi energy.
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related work, see [12]). We take the units @ � "0 � 1. The
potential Vi defined in the SCES region obeys the 1D
Poisson’s equation, whose discretized solution is

Vi���
XL
j�i

XL

l�j

�nl�n���V1; i2�L=2�1;L�; (2)

where nl � h
P
�c
y
l�cl�i is the electron density and n� the
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positive background related to the hole doping ratio � by
n� � 1� �, and � � e

"a (a, lattice constant; �, dielectric
constant). �a; b� stands for the interval between a and b.
HSCES, without Vi, is identical to the Hamiltonian of the
one-dimensional Hubbard model, which exhibits a Mott
transition at half-filling ifU > 0 [13]. If n � 1, the ground-
state is metallic, a state known as the Tomonaga-Luttinger
liquid (e.g., [14]).

The DMRG calculation is performed as follows. In
order to obtain the ground-state consistent with the po-
tential determined by Poissons’s equation, we update
the potential using Eq. (2) at each step of the finite size
method in the DMRG procedure [10]. This is repeated
more than 50 times to obtain total convergence. The ty-
pical size of the block Hilbert space used here is m � 250.
We fix the total number of electrons

PL
i�1 ni � Ln�;

thus, the Fermi level of the electrode changes as elec-
trons (holes) are injected to the SCES region when we
vary V1. The interface is characterized by the work-
function difference VD � �work function of electrode� �
�work function of SCES � � � potential bending � �
VL=2�1 � VL. We note that V1 achieving a given VD

depends on L.
In Fig. 1, we plot the electron density and the potential in

a metal-SCES interface. Three typical solutions are plotted
in an increasing order of VD from (a) to (c).

(a) Interface Mott transition: When the electrode’s
work function is small enough, a quantum well is formed
at the interface, i.e., two insulating [Mott insulator (MI)
and band insulator (BI)] layers with widths dMI and dBI

sandwich a metallic (M) region with width dM. The VD

dependences of these widths are plotted in Fig. 2(b).
(b) Ohmic junction: The Fermi surface of the electrode

and SCES balances, and no barrier is formed.
(c) Schottky barrier: A Schottky barrier is formed as in

conventional metal-semiconductor interfaces.
It is noted here that the qualitative features of the results

are all captured well by the conventional band bending
picture by replacing the valence (conduction) band by the
lower (upper) Hubbard band as shown in Fig. 1. We also
note that in the three cases, n�x� shows an oscillatory
behavior in the electrode regime, which is the 1D Friedel
oscillation �n�x� � cos�2kFr� �F�=r with kF the Fermi
wave number, �F a phase shift, and r the distance from the
interface.

In Fig. 2(a), we plot the electron density n�x� against
��V�x� � V1� in the SCES regime (x 2 �51; 90�), where
data near the boundary (x 2 �91; 100�) were omitted to
avoid the boundary effect. The data fall onto a universal
density-potential curve, which increases as the potential
becomes deeper. In the middle of the curve, there is a
plateau at half-filling whose width is ��U�. The interface
Mott transition is an analog of the filling driven Mott
transition [15,16]. There the filling n��� of a grand canoni-
cal system is studied while the chemical potential � is
varied. The universal density-potential curve is an ana-
logue of the n��� curve in the filling driven Mott transition,
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FIG. 2 (color). (a) Universal density-potential relation of the
1D interface Mott transition. Electron density n�x�, 51 
 x 
 90
is plotted against��V�x� � V1�. V1 is varied from V1 � �3:00
to V1 � 0 with an interval of 0.25. W�U� is the bandwidth and
��U� the width of the n � 1 plateau. Inset: The U dependence of
��U�. This is determined from data with density n 2
�0:96; 1:04� (open circle) and n 2 �0:98; 1:02� (open boxes).
The solid line is the Mott gap from Lieb-Wu’s solution [13].
(b) The width of the Mott insulating (dMI, n 2 �0:85; 1:04�;
blue), metallic (dM, n 2 �1:04; 1:96�; red) and band insulating
(dBI, n 2 �1:96; 2:0�; green) layers plotted against VD. The
symbols are DMRG results while the solid lines are the solutions
of Poisson’s equation [Eqs. (4)–(6)].
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where �V�x�, with a shift of the zero point, plays the role
of �. Indeed, when we compare the width of the plateau
26640
with the Lieb-Wu solution of the Mott gap of the one-

dimensional Hubbard model ��U� � 16t
U

R
1
1

��������
y2�1
p

sinh�2�yt=U� dy
[13], the two coincide well as shown in the inset of
Fig. 2(a). Thus, it can be said that the density-potential
relation in the interface Mott transition follows the n���
curve in the bulk transition.

Poisson’s equation and local equilibrium approxima-
tion.—Since the metal-SCES interface determines the
transport properties of the device, the width of the layers
dMI, dM, and dBI in Fig. 1(a) is of practical interest. Here,
we derive the width by solving the modified Poisson’s
equation

d2V�x�

dx2
� �

e
"
�n�V�x��� n��; (3)

where we assume local equilibrium, that is, we assume that
the electron density depends only on the local value of the
potential. In the following, we evaluate Eq. (3) to obtain the
widths expressed solely by the potential difference VD,
hole doping ratio �, bandwidth W, and the Mott gap �.

We adopt a simplified density-potential relation by
linearizing the DMRG result Fig. 2(a): A constant com-
pressibility �dn�V�=dV � � � 2=�W � �� is assumed
for ��V�x� � V1� 2 ���� 1�=�; �=��; ��=���; �1�
��=�� ��, and n�V� � 0 for ��V�x� � V1� 2
��1; ��� 1�=��, n�V� � 1 for ��V�x� � V1� 2
��=�; �=����, and n�V� � 2 for ��V�x� � V1� 2
��1� ��=���;1�. We seek a solution with a fixed den-
sity at the bulk SCES n�x� � n� � 1� �, MI layer
n�x� � 1 and BI layer n�x� � 2, but varies in the metallic
region (M). The width of the MI layer is nonzero when
VD <��=�

dMI �
�������������������������������������������
2"��VD � �=��=e�

q
(4)

and saturates at VD � ��=���. When the MI layer
saturates, the metallic region appears whose width is
dM �
�����������
"=e�

p
cosh�1�f�VD ����=��

���������������
2��=�

p �����������������������������������������������������������������������������������
�VD ��� �=��2 � 2��=���VD � �=��

q
g=f2��=�� ��=��2g�; (5)
which saturates when VD <�
1��
� � �. Finally, the width

of the BI layer is nonzero when VD <�
1��
� ��

dBI �
�F2�

�����������������������������������������������������������������������������������
�F2�

2� 2 e
" �1�����1���=��VD���

q

e
" �1���

(6)

with F1 �
������������������
2e��="

p
and F2 � F1 cosh�

�����������
e�="

p
dM� ������������

e�="
p

���� sinh�
�����������
e�="

p
dM� where dM here is obtained by

substituting VD � �
1��
� � � in Eq. (5). In Fig. 2(b), we

plot the VD dependence of the widths and compare them
with the DMRG results, and both agree surprisingly well.
This agreement is highly nontrivial: In the insulating phase
the localization length 		W=��U� is of the order of few
sites, but in the metallic phase it should diverge. So, in the
metallic phase the local approximation is not a priori
justified. However, our numerical calculation shows that
it works remarkably well. Based on this success, we apply
this local approximation to more generic cases below.

Application to CER.—In CER devices, the interface
between the electrode and SCES is two dimensional. In
systems with dimensions higher than one, the filling driven
Mott transition is first order, and hysteretic behavior takes
place near the transition point [15–17]. We expect similar
hysteresis in the density-potential relation of the interface
Mott transition [Fig. 3(a)]. If this is the case, coexistence of
the metallic state and the insulating state is possible. Then,
the I-V characteristics of the device shows high nonline-
arity as well as a memory effect, i.e., RRAM behavior,
when a layer of the coexistence state exists in the SCES
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FIG. 3. (a) Density-potential relation near Mott’s transition in
dimensions higher than one (schematic). A region (V1 < V <
V2) exists where metallic and insulating phases coexist. (b) I-V
characteristics of the metal-SCES interface when V1 < VD �
V1 < V2 is satisfied. Pictures of the off state (c) and on state (d).
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region. The condition for this to take place is VD <����
��1�=�. For example, if V1 <VD � V1 < V2 is satisfied,
the region nearest the interface is a phase coexistence layer,
as shown in Figs. 3(c) and 3(d). If this is the case, the
junction may be insulating 3(c) or metallic 3(d). They
correspond to the off and on states, respectively. We can
switch between them by applying a voltage VA on the
electrode, forming a hysteresis loop in the I-V character-
istics Fig. 3(b). We assume a tunneling form for the current

I�VA� � T�VA�I0�VA�; (7)

where T�VA� is the tunneling probability of the barrier and
I0�VA� the current at the metal-SCES junction without any
barrier. I0�VA� reflects the details of the device and may be
Ohmic, i.e., I0�VA� / VA, or if space charge limited current
is realized, I0�VA� / �VA�

2 [18]. We assume that the tun-
neling probability decreases exponentially as the width of
the MI layer grows, i.e., T�VA� � e�dMI�VA�=	, where 	 is
the decay length (here the temperature dependence is
neglected). Neglecting the jump of n in Fig. 3(a), the width
of the MI layer can be obtained by replacing �VD � �=�
in Eq. (4) with Vi � VD � V1 � VA; i � 1; 2 for the on and
off states, respectively. Thus, a hysteresis loop is realized
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in the I-V characteristics as in Fig. 3(b). If we define
the CER ratio by �R=R � �Roff � Ron�=Ron, where
Ron;off is the resistivity of the on and off states, we o-

btain �R=R � e
�������������������������������
2"�V2�VD�V1�=e�
p

=	 � 1. In a Ti/PCMO
based CER device, however, neither the on nor the
off states show Ohmic I-V characteristics [6]. This
can also be understood by our model with VD � V1 <

V1. In such cases, the CER ratio becomes �R=R �

e�
�������������������������������
2"�V2�VD�V1�=e�
p

�
�������������������������������
2"�V1�VD�V1�=e�
p

�=	 � 1. In either
case, we can design a CER device with larger CER ratio
by decreasing the doping ratio � and making the phase
coexistence region wider.

In summary, we have studied the interface Mott transi-
tion by the DMRG method and by Poisson’s equation
combined with a local equilibrium ansatz. We proposed a
novel mechanism of CER for materials with a first order
metal-insulator transition. An important future problem is
to extend the DMRG analysis to ladder and higher dimen-
sional systems and clarify the conditions for the hysteresis
behavior.
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