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Stress Relaxation in a Perfect Nanocrystal by Coherent Ejection of Lattice Layers
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We show that a small crystal trapped within a potential well and in contact with its own fluid responds to
large compressive stresses by a novel mechanism—the transfer of complete lattice layers across the solid-
fluid interface. Further, when the solid is impacted by a momentum impulse set up in the fluid, a
coherently ejected lattice layer carries away a definite quantity of energy and momentum, resulting in a
sharp peak in the calculated phonon absorption spectrum. Apart from its relevance to studies of stability
and failure of small sized solids, such coherent nanospallation may be used to make atomic wires or
monolayer films.
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Solids subject to large uniaxial deformations relieve
stress by the generation and mobility of dislocations [1]
and/or by the nucleation and growth of cracks [1,2]. What
is the nature of stress relaxation when conditions are
arranged such that these conventional mechanisms are
suppressed? Nanoindentation experiments [3] show that
if a small system size prevents the generation of disloca-
tions [4], solids respond to tensile forces by shedding
atoms from the surface layer. In this Letter, we study
equilibrium and dynamical aspects of this process in detail
using Monte Carlo and molecular dynamics simulations
[5] for a model system, analyzing our results in the light of
existing theory [4,6,7]. Briefly, we discover that a small
solid, constrained to remain defect-free by being, at all
times, in contact with its own liquid (a situation easily
realized using optical traps [8]), responds to stress by
exchanging surface atomic layers with the adjacent liquid.
Impacting the solid with a momentum pulse [9] of suffi-
cient strength dislodges an entire crystalline layer coher-
ently, which travels into the liquid as a distinct though
short-lived entity, with a lifetime determined by the fluid
viscosity [7]. A curious feature of this process is that
weaker pulses do not dislodge partial layers, leading to a
novel resonance phenomenon distinguished by a pro-
nounced peak in sound absorption [7]. We believe that
our work may be useful for understanding the failure
behavior and sound and heat [10] absorption properties
of nanostructures [11,12]. Since coherent scattering of
momentum pulses occurs over a narrow window of inci-
dent energies, this phenomenon may also be used as a
detector or analyzer for weak acoustic shocks. Free-
standing, cleaved single atomic layers [13] have recently
been shown to possess interesting mechanical and electri-
cal properties. Coherent spallation [9] of nanocrystals, as
discussed here, may be a practical way to produce such
atomic layers or for making nanowires or nanosurface
coatings [14] in the future.
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We create a dislocation-free nanosolid by trapping a
collection of atoms in their crystalline state within a po-
tential well of depth �� over a finite region S placed in
contact with its fluid (Fig. 1). Trapping of atoms such as
alkali metals and noble gases may be achieved by optical
and magneto-optical techniques [8], using laser powers
ranging from 1 to 102 mW. On the other hand, colloidal
solids [15] may be manipulated using a number of optical
techniques [16,17] or surface templates [18].

To see that this trapped nanosolid is dislocation-free, we
study the equilibrium behavior of a model two-
dimensional (2D) nanosolid using a Monte Carlo simula-
tion in the constant number (N), area (A � Lx � Ly), and
temperature (T) ensemble with the usual Metropolis moves
[4,5] using the Hamiltonian H �

P
ijVij �

P
i��ri�,

where Vij is the 2-body potential and � is the trap poten-
tial, here approximated as a rectangular potential well of
depth ��, the scale of energy being set by kBT (Fig. 1).
For numerical convenience we choose a system of hard
disks (Fig. 1) of diameter �, which sets the scale of length;
our main results trivially extend to particles interacting
with any form of repulsive potential, or even when the
interactions are augmented by a short-range attraction,
provided we choose � deeper than the depth of the attrac-
tive potential. While all our simulations are carried out in
2D, our qualitative results should extend to three dimen-
sions (we use the generic words ‘‘layer’’ and ‘‘surface’’ to
describe the one-dimensional line of atoms). The equilib-
rium density profile [Fig. 1(b)] is obtained [19] for differ-
ent � at fixed average density � � �N=4A.

The ‘‘phase diagram,’’ a plot of the difference in den-
sities of the liquid (�l) and solid (�s > �l) across the
interface ��=� � ��s � �‘�=� versus � (Fig. 2), shows
a sharp jump at� � 8. This transition is associated with an
entire close-packed layer entering the region S of area
As � Lx � Ls, thereby increasing the number of solid
layers by one. The resulting solid is a triangular lattice
3-1 © 2005 The American Physical Society
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FIG. 2. Plot of the equilibrium fractional density change
��=� as a function of � [points (MC data), thick solid line
(approximate theory)], showing a discontinuous jump at � � 8.
The MC data are obtained by averaging over 103 configurations
each separated by 103 MCS, while the system is equilibrated for
>107 MCS starting from a uniform fluid with density � �
0:699. The approximate theory is based on the assumption that
a change in � produces a uniform geometric strain "d from a
reference triangular lattice with the same number of atomic
layers. The geometric strain "d is an oscillatory function [4] of
Ls, with an amplitude that decays as 1=Ls. The Helmholtz free
energy of the harmonic solid is then given by fs � f� �

1
2K�"

2
d,

where f� and K� are the free energy and Young’s modulus,
respectively, of an undistorted triangular lattice, which may be
obtained from simple free-volume theory [4,25]. Minimizing the
total free energy density of the fluid� solid regions, f �
x	fs��s; Ls� � 4�s�=�
 � �1� x�fl��‘� with the constraint
� � x�s � �1� x��‘, where x is the area fraction occupied
by S and fl��‘� is the free energy of the hard disk fluid [26]
that produces the jump in �����=�. Inset (top): A cycle-
averaged hysteresis loop as � is cycled at the rate of 0.2 per
106 MCS. Inset (bottom): A plot of the tensile stress �d against
strain "d. The arrows show the behavior of these quantities as �
is increased from the points marked A–D. The corresponding
points in the ��=� vs� plot is also marked for comparison. The
state of stress in the solid jumps discontinuously from tensile to
compressive from B! C due to an increase in the number of
solid layers by one accomplished by incorporating particles from
the fluid. This transition is reversible, and the system relaxes
from a state of compression to tension by ejecting this layer as �
is decreased.
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FIG. 1 (color online). (a) A 2D crystal of Ns < N atoms
confined to a central region S of area As by means of an optical
trap with a potential ��r� � �� for r 2 S, which increases
sharply to zero elsewhere over a width � � �=4. The atoms
interact with a hard disk potential [4,23,24] Vij � 0 for jrijj>�
and Vij � 1 for jrijj � �, where rij � rj � ri the relative
position vector of the particles. (b) Equilibrium behavior for
different � at fixed � � 0:699 (density at freezing �f � 0:706
[23]) obtained by Monte Carlo simulations with periodic bound-
ary conditions in both directions (N � 1200 particles occupy an
area A � 22:78� 59:18 with the solid occupying the central
third of the cell of size Ls � 19:73). The trap depth � � 6,
supports an equilibrium solid of density �s � 0:753 in contact
with a fluid of density �‘ � 0:672. The closest-packed lines of
the solid in S are parallel to the solid-fluid interfaces that lie, at
all times, along the lines where ��y� ! 0. The density profile
��y� coarse grained over strips of width � (averages taken over
103 MC configurations each separated by 103 MCS), varies from
�‘ to �s as we move into S. The horizontal lines are predictions
of a simple free-volume based theory (see Fig. 2) for �s and �‘.
(c) Superposition of particle configurations from the MC run in
(b) showing a solid-like order (red: high �) gradually vanishing
into the fluid (yellow: low �) across a well defined solid-fluid
interface.
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with a small rectangular distortion "d��s; Ls� [4]. The
qualitative features of this phase diagram may be obtained
by a simple thermodynamic theory (Fig. 2) with harmonic
distortions of the solid, ignoring contributions from spatial
variations of the density. We find that the jump in the
fractional density difference is sensitive to Ls and vanishes
for large Ls or �, the sharpness of the trap.

Adiabatically cycling the trap depth � across the jump
obtains a sharp rectangular hysteresis loop; this indicates
that surface steps (dislocation pairs) nucleated in the
course of adding (or subtracting) a solid layer, have a
vanishingly short lifetime. Consistent with this we find
that the jump in �����=� vanishes when the system is
minimized at each � with a constraint that the solid con-
tains a single dislocation pair. Interestingly, a dislocation
pair forced initially into the bulk rises to the solid-fluid
26610
interface due to a gain in strain energy [6], where they form
surface indentations flanked by kink-antikink pairs. The
confining potential, which prefers a flat interface, may
remove these indentations either by bending lattice layers
or by annealing the kink-antikink pair incorporating parti-
cles from the adjacent fluid. The second process always
costs less energy and happens quickly. The question is how
quickly?

To study the lifetime of the kink-antikink pairs (surface
step), we resort to a molecular dynamics (MD) simulation
3-2
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FIG. 3 (color online). (a)–(c) Plots of the absolute value of the
momentum jvy�y�j for molecular dynamics times t � 0:0007 (a),
0.2828 (b), and 2.8284 (c). The green lines show the positions of
the solid-fluid interfaces. The parameters Ls � 19:73, �s �
0:789, and � � 4:8. The fit to a Gaussian (blue line) is also
shown in (c). The initial momentum pulse with strength V0 � 6
is given within a narrow strip of size ��, just to the left of the
solid region and the Gaussian fitted (and the width �2 extracted)
when the maximum of the pulse reaches a fixed distance of 44.1
from the source. A reflected pulse can also be seen. To reduce
interference from the reflected pulse through periodic boundary
conditions, we increase the fluid regions on either side, so that
for the MD calculations we have a cell of size 22:78� 186:98
comprising 3600 particles. (d) A plot of the time development of
the Fourier component of the local density correlation 	G�y; t�
obtained by averaging, at each time slice t, the sumP
j�1;N exp�� iG � �rj � ri�� over all particle positions ri within

a strip of width �� centered about y and spanning the system
in x. The wave number G � �2�=d�n̂ where d � 0:92 is the
distance between crystal lines in the direction n̂ normal to the
fluid-solid interface. The solid [central region with 	G�y; t� � 0]
ejects a layer (shown by an arrow) that subsequently dissolves in
the fluid. The curves from bottom to top correspond to time
slices at intervals of �t � 0:07 starting from t � 1:06 (bottom).
We have shifted each curve upward by 0:03t=�t for clarity.
Curves such as in (a)–(d) are obtained by averaging over 100–
300 separate runs using different realizations of the initial
momentum distribution.
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using a velocity VERLET algorithm [5], with the unit of time

given by � �
���������������������
m�2=kBT

p
, wherem�� 1� is the mass of the

hard disks [20]. Using values ofm and � typical for atomic
systems like Ar or Rb, � � 1 ps. Starting with an equilib-
rium configuration at � � 9:6 (and kBT � 1) correspond-
ing to a 22 layered solid, we create a unit surface step of
length l by removing a few interfacial atoms and ‘‘quench’’
across the transition to� � 4:8, where the 21 layered solid
is stable. A free energy audit involving a bulk free energy
gain �FLsl, going from a 22 to a 21 layered solid (Fig. 2),
and an elastic energy cost / log�l� for creating the step,
reveals that a surface step is stable only if l � l � 1=Ls.
For small Ls, the critical size l may therefore exceed Lx,
the total length of the interface. Indeed, we observe all
steps, save a complete removed layer, get annealed by
particles from the adjacent fluid over a time scale of order
�. The solid therefore relieves stress only by the loss or
gain of an entire lattice layer, since all other avenues of
stress relief entail higher energy costs.

This mechanism of stress relaxation via the transfer of
an entire layer of atoms may be exploited for a variety of
practical applications, provided we can eject this layer of
atoms deep into the adjoining fluid and enhance its life-
time. Highly stressed monatomic layers tend to disinte-
grate or curl up [13] as they separate from the parent
crystal. It may be possible to bypass this eventuality if
the time scale of separation is made much smaller than
the lifetime of the layer. Can acoustic spallation [9] be
used to cleave atomic layers from a metastable, stressed
nanocrystal? Imagine, therefore, sending in a sharp laser
(or ultrasonic) pulse, producing a momentum impulse
[vy�t � 0� � V0] over a thin region in y spanning the
length Lx of the cell, which results in a weak acoustic
shock [9] (corresponding to a laser power � 102 mW
and a pulse duration 1 ps for a typical atomic system).

The initial momentum pulse travels through the solid
and emerges at the far end [Fig. 3(a)–3(c)] as a broadened
Gaussian whose width, �, is a measure of absorption
of the acoustic energy of the pulse due to combined dis-
sipation in the liquid, in the solid, and at the interfaces
[7,10]. For large enough pulse strengths V0, this is accom-
panied by a coherent ejection of the (single) outer layer of
atoms into the fluid; such coherent nanospallation involves
surface stresses of the order kBT=�

2 � 10�5 N=cm2

[Fig. 3(d)]. In contrast, spallation in bulk solids like steel
needs acoustic pressures in excess of 105 N=cm2 [9] usu-
ally available only during impulsive loading conditions;
the ejected layer is a ‘‘chunk’’ of the surface. This differ-
ence comes about because, unlike a bulk system, a strained
nanocrystal on the verge of a transition from a metastable
n� 1 to a n layered state readily absorbs kinetic energy
from the pulse. The fact that surface indentations are
unstable [see Fig. 4(a)] unless of a size comparable to the
length of the crystal, Lx, ensures that a full atomic layer is
evicted almost always, leading to coherent absorption of
26610
the pulse energy. The coherence of this absorption mecha-
nism is markedly evident in a plot of �2 against V0, which
shows a sharp peak [Fig. 4(b)]. Among the two systems
studied by us, viz., a metastable (� � 4:8) and a stable
(� � 9:6) 22 layered solid, the former shows a sharper
resonance. The eviction of the atomic layer is therefore
assisted by the strain induced interlayer transition and
metastability of the 22 layered solid discussed above.
Spallation is also facilitated if the atomic interactions are
anisotropic so that attraction within layers is stronger than
between layers (e.g., graphite and layered oxides [13]); for
our model, purely repulsive, hard disk solid, an effective,
3-3



FIG. 4 (color online). (a) Configuration snapshot from a por-
tion of our MD cell showing hard disk atoms (green circles) at
the solid (bottom)-liquid interface (yellow line) as a weak
momentum pulse (V0 � 2) emerges into the liquid. The pulse
initially ejects a few atoms of the interfacial crystalline layer (red
circles) of a metastable 22 layered solid at � � 4:8. The result-
ing large nonuniform elastic strain evidenced by the bending of
lattice layers, however, causes these atoms to be subsequently
pulled back into the solid. Only a stronger pulse capable of
ejecting a complete lattice layer succeeds in reducing the number
of solid layers by one leading to overall lower elastic energy.
(b) Plot of the squared width �2 of the momentum pulse after it
emerges from the solid as a function of V0 for � � 4:8 (�) and
9.6 (�). The solid line is a guide to the eye. The absorption of
momentum is largest when the available kinetic energy of the
pulse exactly matches the potential energy required to eject a
layer. The peak in �2�V0� so produced is more prominent for the
metastable 22 layered solid � � 4:8 than for the stable (� �
9:6) system showing a more coherent momentum transfer in the
former case.
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intralayer attractive potential of mean force is induced by
the external potential [4].

The spallated solid layer emerges from the solid surface
into the fluid, and travels a distance close to the mean free
path, whereupon it disintegrates due to viscous dissipation
[Fig. 3(d)]. The lifetime of the layer is about 2–3 time units
(�), which translates to a few ps for typical atomic systems.
The lifetime increases with decreasing viscosity of the
surrounding fluid. Using the Enskog approximation [21]
to the hard disk viscosity, we estimate that by lowering the
fluid density one may increase the lifetime by almost
3 times. The lifetime enhancement is even greater if the
fluid in contact is a low density gas (when the interparticle
potential has an attractive part [22]).
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