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Dynamical Heterogeneity Close to the Jamming Transition in a Sheared Granular Material
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The dynamics of a bidimensional dense granular packing under cyclic shear is experimentally
investigated close to the jamming transition. Measurement of multipoint correlation functions are
produced. The self-intermediate scattering function, displaying slower than exponential relaxation,
suggests dynamic heterogeneity. Further analysis of four point correlation functions reveal that the grain
relaxations are strongly correlated and spatially heterogeneous, especially at the time scale of the
collective rearrangements. Finally, a dynamical correlation length is extracted from a spatiotemporal
pattern of mobility. Our experimental results open the way to a systematic study of dynamic correlation

functions in granular materials.
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The dynamical behavior of granular media close to the
“jamming transition” is very similar to that of liquids
close to the glass transition [1]. Indeed, granular media
close to jamming display a similar dramatic slowing down
of the dynamics [2,3] as well as other glassy features such
as aging and memory effect [4]. Recently, a “microscopic”
confirmation of the above similarity has been obtained
analyzing directly the grain dynamics under cyclic shear
during compaction [5] or at constant density [6]. The
typical trajectories of grains display the so-called cage
effect and are remarkably similar to the ones observed in
experiments on colloidal suspension [7] and in molecular
dynamics simulations of glass formers [8]. As for glass
formers, and contrary to standard critical slowing down,
this slow glassy dynamics does not seem related to a
growing static local order. For glass formers it has been
shown numerically [9-12] and experimentally [13] that
instead the dynamics becomes strongly heterogeneous
and dynamic correlations build up when approaching the
glass transition. The existence of a growing dynamic cor-
relation length is very important to reveal some kind of
criticality associated with the glass transition [14].

Here we also unveil that granular materials are strongly
dynamically correlated close to the jamming transition.
First, we shall focus on two point functions, in particular,
the self-intermediate scattering function, whose slower
than exponential relaxation suggests dynamic heterogene-
ity. Then, following recent theoretical suggestions [15,16],
we shall turn to four point correlation functions. They have
been introduced for glass formers to measure properly
dynamic correlations [17] and indeed reveal that the dy-
namics is strongly correlated and heterogeneous. Finally,
we shall focus on spatiotemporal pattern of mobility, out of
which we extract a direct measurement of a dynamical
length scale. Our experimental results, to our knowledge
the first direct measurement of four point spatiotemporal
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correlation functions [18], open the way to a systematic
study of dynamic correlation functions in granular material
as a way towards a better understanding of glassy and
“jammy”’ materials in general. The experimental setup, a
more robust and better designed version of the one pre-
sented in Ref. [6] is as follows: a bidimensional, bi-
disperse granular material, composed of about 8.000 me-
tallic cylinders of diameter 5 and 6 mm in equal propor-
tions, is sheared quasistatically in an horizontal deformable
parallelogram. The shear is periodic, with an amplitude
Omax = +£5°. The volume fraction (® = 0.84) is main-
tained constant by imposing the height of the parallelo-
gram. We follow 2818 grains located in the center of the
device to avoid boundary effects with a high resolution
digital camera which takes a picture each time the system
is back to its initial position § = 0. The unit of time is one
cycle, a whole experiment lasting 10.000 cycles. The unit
of length is chosen to be the mean particle diameter d.
These conditions are very similar to Ref. [6] and by repeat-
ing the same analysis we find a cage radius of 0.2 and a
cage lifetime of 300. As discussed in Ref. [6], the diffusion
is isotropic, at least far from the borders of the experimen-
tal cell.

Let us first focus on the self-intermediate scattering
function which measures the dynamics of single particles:

Fy= (By(k 1) = S expl=ik(r (0 = r,O)). (1)

J

where r;(#) is the position of the jth particles at time .

F(k, 1) denotes the nonaveraged instantaneous observable.
(-) means (here and in the following) a time average over
300 steps of 10 cycle each computed after a few thousand
cycles, when the systems has reached a steady state (at
least on the time scale of the experiment). The sum in (1) is
over all tracked particles.
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The function F,(k, ¢) is plotted on the left of Fig. 1 as a
function of time for different odd values of k ranging from
1 to 29. Contrary to glass formers there is no visible plateau
in this correlation function although from trajectories it is
possible to identify a clear cage effect (see Fig. 2 of
Ref. [6]). Note that the short-time dynamics is subdiffusive
[6] probably because granular media do not experience
thermal relaxation. Therefore the separation of time scales
and the corresponding plateau in correlation functions is
much less pronounced as in colloids [7]. Analyzing the
curves in Fig. 1 we find that the decreasing of F(k, ) is
slower than exponential in time. A good fit is provided by a
stretched exponential: exp[—(¢/7(k))?®)]. We plot on the
right of Fig. 1 7(k) (top) and B(k) (bottom) as a function of
k. At small k the relaxation time scales as k2 and the
exponent B(k) is one. As expected, the grains perform a
Brownian motion on large length and time scales and
therefore F(k, t) = exp(—Dk?t) for small k and large t.
Increasing k the stretched exponent decreases and is of the
order of 0.7 for k of the order of 27, corresponding to the
intergrain distance, and even lower for higher values of k.
A very similar behavior has been found for glass formers
[8,13]. Also the decrease of 7(k) steepens and decreases
sharply for large k. This is also related to the short-time
subdiffusive dynamics. In this regime the particle displace-
ment distribution has a variance scaling as 7'/2 (not ¢ like
for standard diffusion) and is well fitted by a Gaussian.
Assuming this functional form and Fourier transforming to
get the intermediate scattering function, one finds that the
relaxation time goes as k™4, hence a crossover from a k2
behavior at small k to a more rapid decreasing at large k as
in Fig. 1.

Dynamical heterogeneity is one of the possible expla-
nation of the nonexponential relaxation of F,(k, 1): the
relaxation becomes slower than exponential because there
is a strong spatial distribution of time scales [13]. This
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FIG. 1 (color online). On the left: F,(k, ) as a function of time
for different odd values of the wave vector k = 1, 3, ..., 29 from
top to bottom (as indicated by the arrow and the increasing
k /). The black lines are fits of the form exp[ —(z/7(k))#®)]. On
the right: 7(k) (top) and B(k) (bottom) as a function of k.

effect is strong for intermediate and large values of k.
Instead for smaller ks, the heterogeneities are averaged
out and a larger value of B(k), going to one for k — 0, is
expected. This coincides indeed with the trend found in
Fig. 1. However, this is not the only possible scenario
[13,19]. In the following we want to go one step further
and show direct “smoking gun” evidence of dynamical
correlations. For this purpose it is of interest to consider the
structural relaxation and not only the single particle one,
as given by F(k, t). We focus on the density overlap [17]
following previous works on glass-forming liquids:

04 = (0% = % fdrdr’<5p(r, Hw,(r —r)8p(r,0)),
()

where p(r,1) =Y ,;6(r — ri(t)) and 8p(r,1) = p(r, 1) —
(p). The overlap function is a non-normalized Gaussian:
w,(r) = exp(—r?/2a?). The evolution of Q“() is a mea-
sure of how long it takes to the systems to decorrelate from
its density profile at time ¢ = 0. Figure 2 shows that the
behavior of Q“(¢) is similar to the one of F(k, 1), as for
glass formers [11,17]. The proper way to unveil spatiotem-
poral correlations is through the fluctuations of the tempo-
ral relaxation [17]. Those are characterized by dynamical
susceptibilities:

x4 (k, 1) = N{(H(k, 1) — (A (k, 1)))*) 3)

where H can either be F(k, 1) or Q%%). They unveil
dynamic correlations exactly as fluctuations of the magne-
tization unveil magnetic correlations close to a ferromag-
netic transition; see, e.g., Refs. [20,21]. One way to
understand how such susceptibilities relate to spatial
heterogeneities of the dynamics is to decompose, say,
Q%) in local contributions: NQ(t) = p [drg®(r, 1)
where §%(r, t) = % [dr'sp(r,tyw,(r — r')ép(r, 0). Using

this expression one finds /\/g(t) =p/f er?(r, ) where

GL(r, 1) = ([§(r, ) = (@°(r, I[G°(0, 1) = (g°(0, D i
the spatial correlation of the local temporal relaxation: if
at point 0 an event has occurred that leads to a decorrela-
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FIG. 2 (color online).
0.05,0.1,...,0.5.

Q,(t) as a function of time for a =
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tion of the local density over the time scale 7, Gf(r, t) is the
probability that a similar event has occurred a distance r
away, within the same time interval . X?(r), its volume
integral, quantifies how spatially correlated the dynamics is
(see Refs. [9,11,20,21] for a more detailed discussion).
Figure 3(a) displays )(fs(t) for k=1,3,...,29. It has
the form found for glass formers [9,11,12,17,21]: it is of
the order of 1 at small and large time and displays a peak at
a time somewhat larger than the time scale of the subdif-
fusive regime. The peak is a clear signature of dynamic
heterogeneity and shows that the dynamics is maximally
correlated on time scales of the order of the relaxation
time. A rough estimation of the corresponding dynamical
correlation length is obtained identifying the peak of
X4'(2), of the order of 100, to a correlated area 7¢Z,,
leading to a length &, = 6 in agreement with a previous
estimate [6]. We find very similar results for X?(t), as
shown in Fig. 3(b) for a = 0.05,0.1, ..., 0.5. The largest
Xf(t) is obtained for a = 0.15, which corresponds to the
typical displacement during the subdiffusive regime. Large
and small values of a corresponds to small values of the
peak because the dynamics on small length scales is cer-
tainly not very correlated and on very long length scales the
heterogeneous character of the dynamics is averaged out.
As discussed in Ref. [21], the power law growth of Xf*‘(t)
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FIG. 3 (color online). (a) ij (1) as a function of time for odd
values of k=1,3,...,29. Inset: Log-Log plot for k=
7,9,11,13. (b) )(?(t) as a function of time for values of a =
0.05,0.1,...,0.5. Inset: Log-Log plot for a=
0.1,0.15,0.2, 0.25.

[ )(?(t)] before the peak with exponents between 1 and 2/3
(see insets of Fig. 3) suggest that the dynamic correlations
cannot be induced by independent defect or free volume
diffusion.

We now focus on spatiotemporal patterns of mobility.

Figure 4 presents a gray-scale plot of §4(r, 1) =
S 6(r — ri(0)w,(ri(r) — r;(0)) for r=42, 435, 1113,
2526, and a = 0.15, where &8(r) is approximated by a
Gaussian of width 0.3. By definition §%(r, f) measures a
coarse grained mobility: if the particle that was close to r at

FIG. 4 (color online). Grey-scale plot of §%(r, 1), at t=
42,435, 1113,2526 from top to bottom (a = 0.15). Black re-
gions correspond to lower values of ¢¢. The displacements of the
particles during the interval of time ¢ are plotted in white (yellow
online). The white (yellow online) dots are particles that have
been lost during tracking.
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FIG. 5 (color online). (a) self part of the Van Hove correlation
function after angular integration at = 438; the solid line is the
probability distribution function (pdf) for a Gaussian distribu-
tion. (b) In(Gy4(r, 438)) as a function of r (for a = 0.15); the
straight line is a linear fit.

t = 0 moved away more than «a in the time interval ¢ then
G%(r, t) = 0. The yellow lines in Fig. 4 are the particle
displacements in the time interval ¢. At short-times (¢ =
42) only a few particles have moved and from Fig. 4 it
appears that they do so in a stringlike fashion. On larger
times (¢ = 435, 1113) the relaxed regions are ramified and
finally, at very long time (¢ = 2526) the majority of the
particles has moved substantially but there remain few
(rather large) regions not yet relaxed. These findings, simi-
lar to those found in simulation of supercooled liquids [9—
12], suggest that the mobility is organized in clusters,
which are the direct visual evidence of the dynamical
heterogeneities.

Figure 5(a) displays the probability distribution of the
grains displacement for r = 438 [corresponding to the
maximum of Xf(t)] and quantifies the excess of fast and
slow grains compared to the Gaussian distribution (in the
solid line). In Fig. 5(b), G4(r, 438), the radial autocorrela-
tion of ¢¢, averaged over ten realizations (for a = 0.15),
exhibits an exponential decay over a characteristic dynami-
cal length ¢ =7, in agreement with the value obtained
from the peak of Xfx. For comparison, the dynamic length
scales reported in experiments close to the glass transition
are of the order of 5-10 molecular diameters [13]. In
conclusion, our results, to our knowledge the first extensive
experimental study of two and four point spatiotemporal
dynamic correlation functions, furnish a direct experimen-
tal evidence that granular materials close to jamming have
an heterogeneous and correlated dynamics. It would cer-
tainly be worth studying the possible relations between the
dynamic correlations we have found and the diverging
length scales that have been proposed to show up at the
jamming transition (coming from the jammed phase) [22].
Our results reveal a remarkable similarity with glass-
forming liquids that reinforces the connection between
glasses and jamming systems [1]. They open the way to
further analysis, varying a control parameter (as is the
temperature for liquids and packing fraction for colloids),
or during compaction. That would give other important
information on the microscopic dynamics and provide
stringent constraints to the theory of glassy and jammy
materials in general.
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