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Crystalline Ground States for Classical Particles
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Pair interactions whose Fourier transform is non-negative and vanishes above a wave number K0 are
shown to give rise to periodic and aperiodic infinite volume ground state configurations (GSCs) in any
dimension d. A typical three-dimensional example is an interaction of asymptotic form cosK0r=r

4. The
result is obtained for densities � � �d, where �1 � K0=2�, �2 � �

���
3
p
=8��K0=��

2, and �3 � �1=8
���
2
p
��

�K0=��3. At �d there is a unique periodic GSC which is the uniform chain, the triangular lattice, and the
bcc lattice for d � 1; 2; 3, respectively. For � > �d, the GSC is nonunique and the degeneracy is
continuous: Any periodic configuration of density � with all reciprocal lattice vectors not smaller than
K0, and any union of such configurations, is a GSC. The fcc lattice is a GSC only for � � �1=6

���
3
p
��

�K0=��
3.
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Crystallization of fluids is the paradigm of a continuous
symmetry breaking. Its conceptual importance has long
been recognized [1,2], yet its derivation from first prin-
ciples is still missing. Nature and computers can easily
produce it, but a theoretical understanding of the emer-
gence of a periodic order in continuous space as a result of
a translation invariant interaction appears to be particularly
hard. The very first step along the way to a proof of a phase
transition is to show that such interactions do have periodic
ground states. This much more modest program has been
advancing also very slowly, and, for a long time, the results
were limited mainly to one dimension [3–5]. A ground
state configuration (GSC) is a minimizer, in a sense to be
defined precisely, of the interaction energy. It is only
recently that the mere existence, without characterization,
of an infinite volume GSC was proved for a class of inter-
actions in all dimensions [6]. The first two-dimensional
example of an interaction giving rise to the triangular
lattice as a GSC is even more recent [7]. The main concern
of this Letter is to provide examples of ground state order-
ing in three dimensions. The system we study is composed
of identical classical particles interacting via pair interac-
tions whose Fourier transform is non-negative and decays
to zero at a K0 <1. Our results, although not predictive
below a dimension-dependent density �d � Kd

0 , are rather
unexpected. At �d a Bravais lattice (bcc for d � 3) is the
unique periodic GSC. At higher densities, the set of GSC is
continuously degenerate: Within certain limits, volume-
preserving deformations can be done on every GSC with-
out cost of energy, thus yielding other GSCs. The degen-
eracy increases with the density, in the sense that
compressing any GSC results in a GSC of a higher density
that can further be deformed. We can understand this
proliferation of GSCs as a consequence of the insensitivity
of the interaction to details on a length scale shorter than
K�1

0 . That bcc lattice can be more stable than fcc should
not surprise the reader. At equal densities, the fcc nearest
neighbor distance is slightly larger than the bcc one. For a
purely repulsive interaction, the fcc lattice is expected to be
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more stable; for a partly attractive interaction, at some
densities the bcc lattice can have a lower energy.

Definitions and notations.—We shall deal with trans-
lation invariant symmetric pair interactions ’�r� r0� �
’�r0 � r�. Rotation invariance will not be supposed. The
N-particle configurations (N � 1) are subsets of N points
of Rd and will be denoted by Latin capitals B, R, X, Y.
Only infinite configurations with a bounded local density
will be considered. The number of points in R will be
denoted byNR. If R is a finite configuration, the interaction
energy of R is U�R� � 1

2

P
r;r02R;r�r0’�r� r0�. We will

assume that’ and ’̂�k� �
R
Rd ’�r�e�ik	rdr are absolutely

integrable on Rd. This ensures that both ’̂ and ’�r� �
�2���d

R
Rd ’̂�k�e

ik	rdk are continuous functions decay-
ing at infinity [8]. In the theorem below, ’̂ � 0 implies
U�R� � �’�0�NR=2, hence, stability [9]. Let R and X be a
finite and an infinite configuration, respectively. The en-
ergy of R subject to the field created by X is given by

U�RjX� � U�R� 

X
r2R

X
x2X

’�r� x�: (1)

Fix a real �. An infinite configuration X is called a grand
canonical ground state configuration for chemical potential
� (�GSC) if it is stable against bounded perturbations; i.e.,
if for any bounded domain � and any R

U�R\�jX n����NR\� �U�X\�jX n����NX\�;

(2)

where X n� is the set of points of X outside �. Because
every bounded domain is in a parallelepiped, these suffice
to be considered. X is a canonical GSC if (2) holds for
every R such that NR\� � NX\�. Thus, any �GSC is a
GSC. If ’ is superstable [9], the relation � � � (density)
is invertible and any GSC is expected to be a �GSC for a
suitable �. Local stability in the sense of Eq. (2) implies
global stability; i.e., a GSC minimizes the energy density at
the given density; cf. Ref. [10] and the end of this Letter.
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A Bravais lattice B � f
Pd
��1 n�a�jn 2 Zdg will be re-

garded as an infinite configuration. Here a� are linearly
independent vectors and n � �n1; . . . ; nd� is a
d-dimensional integer. Any periodic configuration X can
be written as X � [Jj�1�B
 yj�, where B is some Bravais
lattice and B
 y is B shifted by the vector y. For a given X,
B is nonunique and we shall choose it so that J is mini-
mum. Then we call X a B-periodic configuration. The
reciprocal lattice is B� � f

P
n�b�jn 2 Zdg, where

a� 	 b� � 2����. The nearest neighbor distance (the
length of the shortest nonzero vector) in B� will be denoted
by qB� . This is related to the density via ��B� �
ctype�qB� �d, where ctype is determined by the aspect ratios
and angles of the primitive cell of B. Let � be the paral-
lelepiped spanned by the vectors L�a�, � � f

P
x�a�j0 �

x� < L�g. We shall take L� to be positive integers; then �
is a period cell for B-periodic configurations, and the dual
lattice �� � f

P
�n�=L��b�jn 2 Zdg contains B�. Next,

we define the periodized pair interaction

’��r� �
X

n2Zd
’
�
r


X
n�L�a�

�
(3)

and, for R in �, the periodized interaction energyU��R� �
1
2

P
r;r02R;r�r0’��r� r0�. The sum defining ’��r� is uni-

formly convergent; therefore, ’��r� is continuous and
tends to ’�r� as each L� tends to infinity. Finally, let

�� � �

1

2

�
’�0� � V����1

X
k2��

’̂�k�
�
; (4)

where V��� is the volume of �. �� tends to � as �
increases to Rd.

The main observation leading to the result presented
below is as follows. Let r1; . . . ; rN be any finite configura-
tion. If ’̂�k� � 0 and is zero for jkj � K0, then

XN
i;j�1

’�ri�rj�� �2���d
Z
jkj<K0

’̂�k�
��������
XN
j�1

eik	rj
��������

2
dk�0:

(5)

If we use periodic boundary conditions in a box containing
rj, the integral is to be replaced by a sum. The k � 0 term
of this sum is structure-independent (for N fixed) and the
rest is non-negative. Hence, any structure making the rest
vanish is a GSC. But that is exactly what periodic struc-
tures accomplish, provided their shortest reciprocal lattice
vector is outside the jkj � K0 sphere.

THEOREM. Let both ’ and ’̂ be absolutely integrable
in Rd, ’̂�k� � ’̂��k� � 0 and ’̂�k� � 0 for jkj � K0.
We have the following results.

(i) Let B be a Bravais lattice with qB� � K0. Then every
B-periodic configuration X is a GSC, and its energy per
volume e�X� � 1

2���’̂�0� � ’�0�
 is minimum for the
density � � ��X�. On every period cell �, X \� mini-
mizes U��R� for fixed NR � NX\�. Also, X creates a
force-free field on test particles; i.e.,U�rjX� is independent
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of r. Any union of GSCs of the above type is a GSC (that
can be aperiodic).

(ii) There is a smallest density �d at which qB� � K0

holds for a single Bravais lattice. If ’̂�k�> 0 for 0< jkj<
K0, this B is the only periodic GSC. �1 � K0=2�, �2 �

�
���
3
p
=8��K0=��2, and �3 � �1=8

���
2
p
��K0=��3, and the re-

spective GSCs are the uniform chain, the triangular lat-
tice, and the bcc lattice. The fcc, simple hexagonal
(sh), simple cubic (sc), and hcp lattices are GSCs at and
above the respective densities �fcc � �1=6

���
3
p
��K0=��3,

�sh � �
���
3
p
=16��K0=��

3, �sc � �1=8��K0=��
3, and �hcp �

�4=3
���
3
p
��K0=��

3.
(iii) Suppose, in addition, that ’̂�0�> 0 and ��


1
2’�0�
=’̂�0� � �d. Then any B-periodic configuration X
such that qB� � K0 [equivalently, ��B� � �d] and ��X� �
��
 1

2’�0�
=’̂�0� is a �GSC, and its energy density
e��X� � e�X� ����X� � � 1

2��X�
2’̂�0� is minimum

for the given �. If � is a period cell, X \� minimizes
U��R� ���NR.

Because all the moments of ’̂ are finite, ’ is infinitely
differentiable. A hard-core interaction can be added to ’,
provided that the close-packing density is larger than �d.
Its only role is to restrict the set of allowed configurations.
The set of GSCs is reminiscent of a compressible fluid. The
canonical and grand canonical ground state energy den-
sities,

e� �
�
2
��’̂�0� � ’�0�
; e� � �

1

2’̂�0�

�
�


’�0�
2

�
2
;

(6)

are Legendre transforms of each other,

e� � max
�
fe� 
��g; e� � min

�
fe� ���g: (7)

The � dependence of e� shows that the interaction is stable
if ’̂�0� � 0 and is superstable [9] if ’̂�0�> 0. In the
second case, (7) expresses the equivalence of the canonical
and grand canonical ensembles. The corresponding density
and chemical potential satisfy the equation

�
 ’�0�=2� ’̂�0�� � 0: (8)

This linear relation breaks down for small densities, be-
cause � has to tend to �1 as � approaches zero. This
implies a nonanalyticity, presumably at �d.

Examples.—Based on a result on Fourier transforms
[11], we can obtain fast-decaying (but not finite-range)
interactions satisfying the conditions of the theorem.
Take any locally integrable real function g�k� � g��k� �
0, fix an " > 0, and define ’̂�k� �

R
jk0j<K0�"

g�k0��"�k�
k0�dk0, where �"�k� � exp���1� k2="2��1
 if k < " and
0 otherwise. This ’̂ is infinitely differentiable. By inverse-
Fourier transforming it, we find ’ to decay faster than
algebraically. More interesting are the long-range interac-
tions. They can be obtained by choosing ’̂ to be only
finitely many times differentiable (namely, at jkj � K0).
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For example, in one dimension ’̂�k� � K0 � jkj for jkj �
K0 yields ’�x� � �1� cosK0x�=�x

2. In three dimensions,
rotation invariant examples can be obtained by starting
with a function f�k� � 0 such that f is 3 times continu-
ously differentiable and f�K0� � f0�K0� � 0. Then, defin-
ing ’̂�k� � f�jkj� for jkj � K0, by partial integration

’�r� �
1

2�2r4

�
��kf�00 coskr
K0

0 �
Z K0

0
�kf�000 coskrdk

�
:

(9)

For instance, f�k� � �2�k
 z��k
 �z��k� K0�
2 with z�

�K0=10��1
3i� gives ’�r� � �13=10�K3
0 cosK0r=r

4 

O�1=r5�. The higher order terms make ’ finite at the
origin. One can verify that ’�0�=2’̂�0�> �3, so this inter-
action has a continuous family of inequivalent �GSC at
� � 0. Also, it has the bcc lattice as the unique periodic
GSC at density �1=8

���
2
p
��K0=��

3.
LEMMA. Let � be a parallelepiped spanned by the

vectors L�a�. Then

’��r� � V����1
X

k2��
’̂�k�eik	r: (10)
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In one dimension, for r � 0, Eq. (10) reduces to the
Poisson summation formula [8].

Proof of the lemma.—The Fourier coefficients of’� areR
� ’��r�e�ik	rdr. Substituting the sum (3) for ’��r�, in-

tegrating by terms, and resumming, we obtain ’̂�k�. The
series on the right is a continuous periodic function whose
Fourier coefficients are also ’̂�k�. Because of the com-
pleteness of the system feik	rjk 2 ��g in the Banach space
of integrable functions on �, equality for all r follows.

Proof of the theorem.—(i), (iii) Consider the periodic
configuration X � [Jj�1�B
 yj� and let R be obtained
from X by a bounded perturbation. Take a period parallel-
epiped � of X large enough to contain the perturbed part,
that is, R � X outside �. Recall that �� contains B� as a
part. For a k in ��,

X
x2X\�

e�ik	x � �B� �k�NB\�

XJ
j�1

e�ik	yj ; (11)

where �B� �k� � 1 if k is in B� and 0 otherwise. Using the
lemma and Eq. (11), after some computation, one finds
U�R \�jX n�� � �
1

2
’�0�NR\� 


Z ’̂�k�
2�2��d

���������
X

r2R\�

eik	r
��������

2
�2

X
r2R\�

eik	r
X

x2X\�

e�ik	x
�
dk


 ��B�
X

k2B�
’̂�k�

XJ
j�1

e�ik	yj
X

r2R\�

eik	r: (12)

Here ��B� � NB\�=V���, the density ofB. We can obtainU�X \�jX n�� from Eq. (12) if we replace R byX and reapply
Eq. (11). Finally, the condition (2) reads

1

2
�2���d

Z
’̂�k�

��������
X

x2X\�

eik	x�
X

r2R\�

eik	r
��������

2
dk��NR\��NX\����
’�0�=2���X�’̂�0�



��B�
X

0�k2B�
’̂�k�

�
NB\�

��������
XJ
j�1

eik	yj
��������

2
�
XJ
j�1

e�ik	yj
X

r2R\�

eik	r
�
: (13)
Here we usedNX\� � JNB\�, ��X� � J��B�. If ’̂�k� � 0
and is zero for jkj � qB� , the left member is non-negative,
and the sum multiplying ��B� vanishes for all R. These and
NR\� � NX\� ensure that (13) holds true, so that X is a
GSC. If, moreover, ��X� � ��
 ’�0�=2
=’̂�0�, the first
term of the right member also vanishes for all R, and X is a
�GSC.

Choosing any period parallelepiped �, the canonical
energy density of a B-periodic X of density � is

e�X� �
1

2V���

X
x2X\�

X
x�x02X

’�x� x0�

�
1

2V���

X
x;x02X\�

’��x� x0� �
1

2
’�0��

�
1

2
��B�2

X
k2B�

’̂�k�
��������
XJ
j�1

eik	yj
��������

2
�

1

2
’�0��: (14)
If ’̂�k� � 0 for jkj � qB� , then e�X� � 1
2 ’̂�0��

2 �
1
2’�0��. If also ’̂ � 0, then X is a GSC and e�X� is the
absolute minimum among configurations of density �.

For R in � and using again the lemma,

U��R� �
1

2V���

X
0�k2��

’̂�k�
��������
X
r2R

eik	r
��������

2



NR
2V���

�

�
NR’̂�0� �

X
k2��

’̂�k�
�
; (15)

cf. Eq. (5). If R � X \�, according to (11), the first sum
reduces to 0 � k 2 B� and vanishes completely if ’̂�k� �
0 at jkj � qB� . When ’̂ � 0, X \� minimizes U��R� for
fixed NR � NX\� and U��R� ���NR under the stronger
conditions of (iii). One can also show the opposite impli-
cation: If X is periodic and X \�n minimizes U�n

for a
sequence �n ! Rd of period cells, then X is a GSC.
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With � the primitive unit cell,

U�rjX� �
X
x2X

’�r� x� �
X

x2X\�

’��r� x�

� V����1
X

x2X\�

X
k2B�

’̂�k�eik	�r�x� � ��X�’̂�0�;

(16)

independent of r. This implies that the union of GSCs is
also a GSC that can be aperiodic; see [12] for details.

(ii) The one-dimensional case is obvious. In two dimen-
sions, ��B� � �2���2jb1 � b2j; in three dimensions,
��B� � �2���3j�b1 � b2� 	 b3j. We are going to select
B� by choosing b� in such a way that ��B� is minimum,
on the condition that qB� � minn�0fj

P
n�b�jg � K0. The

resulting Bravais lattice at the given density will be de-
noted by Bd. In two dimensions, let b1 be one of the
shortest vectors of B�, so that b1 � qB� . Consider the
shortest vectors of B� not collinear with b1. These form a
star: With k,�k is also in the set. Choose b2 among them
so that b1 	 b2 � 0. In the triangle of sides b1, b2, and
jb2 � b1j, we have jb2 � b1j � b2 � b1, so the largest
angle is that of the vectors b1 and b2. Therefore, this angle
�12 is between �=3 and �=2. Under these restrictions, the
minimum of jb1 � b2j is obtained for b2 � b1 and �12 �
�=3. These conditions define a triangular lattice for B�2 and
also a triangular lattice for B2, so that �2 � �tr. In three
dimensions, the threshold densities of cubic lattices, at
which the length of their shortest reciprocal lattice vector
is K0, can simply be computed. This gives the order �bcc <
�fcc < �sc and the values presented in the theorem. For the
hexagonal lattice, the threshold density depends on c=a,
and the minimum is obtained for c=a �

���
3
p
=2. Its value

and that of the hcp lattice at c=a �
���
8
p
=3 and J � 2 are

given in the theorem. It remains to convince oneself that
the other Bravais lattices cannot give a smaller density.
After some reflection, one can conclude that the condi-
tional minimum of j�b1 � b2� 	 b3j is attained by choosing
b1 � b2 � b3 � K0 and �=3 for the three angles between
the three pairs of vectors. This specifies B�3 as an fcc lattice
and B3 as a bcc lattice. Thus, �3 � �bcc. The last step of the
proof of the theorem is to show that, at the density �d, no
other periodic configuration X can be a GSC. Suppose,
therefore, that ��X� � �d. If X is B-periodic but X � B,
then ��B� � �d=J < �d and, therefore, qB� <K0. If X �
B but B � Bd, then again qB� <K0. Because ’̂�k�> 0 for
jkj<K0, at least two nonzero vectors of B� give a positive
contribution to the energy density (14). Hence, e�X�>
1
2�d��d’̂�0� � ’�0�
 � e�Bd� while ��X� � ��Bd�. Then
X is not a GSC because of the following.

Let X and Y be two configurations of equal densities, but
let e�Y�< e�X�. Then X cannot be a GSC of ’. In other
words, every GSC minimizes the energy density at the
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given number density. Thus, no GSC can be metastable;
cf. Ref. [10]. We only outline the proof; details will be
given elsewhere [12]. Take a large domain � of volume V
such that NX\� � NY\�. Estimate

U�X \�jX n�� � U�X \�� 

X

x2X\�

X
x02Xn�

’�x� x0�:

The first term is V���e�X� 
 o�V�, while the second is
o�V�. Similarly, U�Y \�jX n�� � V���e�Y� 
 o�V�.
Thus, U�Y \�jX n��<U�X \�jX n�� for � large
enough. This concludes the proof of the theorem.

In summary, for a class of translation invariant pair
interactions, we have proved the existence of periodic
and aperiodic ground states in classical particle systems.
This result is probably the first of its kind in three dimen-
sions. Our finding that ground states of innocent looking
RKKY-type interactions such as cosK0r=r

4 are continu-
ously deformable by volume-preserving transformations
without cost of energy is quite unexpected. In another
interpretation, this means that existing crystal structures
are stable against perturbations with interactions described
in this Letter.
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