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Weak Compressible Magnetohydrodynamic Turbulence in the Solar Corona
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This Letter presents a calculation of the power spectra of weakly turbulent Alfvén waves and fast
magnetosonic waves (‘‘fast waves’’) in low-� plasmas. It is shown that three-wave interactions transfer
energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfvén waves. High-frequency
waves produced by MHD turbulence are a promising explanation for the anisotropic heating of minor ions
in the solar corona.
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The heating of the solar corona is a long-standing prob-
lem. Measurements taken with the ultraviolet coronagraph
spectrometer (UVCS) have provided important constraints
on coronal heating, showing, for example, that T? � Tk
and T? � 108 K for O�5 ions at a heliocentric distance r of
roughly two solar radii, where T? and Tk are the tempera-
tures for random motions perpendicular and parallel to the
magnetic field B [1,2]. These measurements imply that the
average magnetic moment kBT?=B of O�5 ions increases
rapidly with r and strongly suggest that O�5 ions are
heated by plasma waves with frequencies ! comparable
to or greater than the ions’ cyclotron frequency �. (If!�
�, the average magnetic moment is almost exactly
conserved.)

Different sources have been proposed for these high-
frequency waves, including reconnection events in the
coronal base [3–5], heat-flux-driven plasma instabilities
[6], and magnetohydrodynamic (MHD) turbulence [7,8].
An apparent difficulty with this last source is the finding
that in incompressible and weakly compressible MHD
turbulence there is little or no cascade of energy to high
frequencies [9–14]. However, incompressible and weakly
compressible MHD neglect the fast magnetosonic wave
(‘‘fast wave’’). In this Letter, a weak-turbulence calculation
is used to show that when fast waves are accounted for,
MHD turbulence in low-� plasmas transfers energy to
high-frequency fast waves and, to a lesser extent, high-
frequency Alfvén waves. (In the corona, � � 8�p=B2 �
0:01, where p is the pressure.) The high-frequency waves
produced by MHD turbulence are of importance not only
for coronal heating, but for particle acceleration in solar
flares as well [15,16].

The MHD momentum and induction equations with
Laplacian viscosity and resistivity are
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where � is the density, v is the velocity, p is the pressure,
and B is the magnetic field. In this Letter, the magnetic
field is taken to consist of a uniform background field and a
small-amplitude fluctuating field: B � B0ẑ� �B. The
pressure is discarded since � is taken to be � 1. The
spatial Fourier transforms of v and b � �B=

����������
4��
p

can
be written

v k � va;kêa;k � vf;kk̂? � vs;kẑ (3)

and

b k � ba;kêa;k � bf;kêf;k; (4)

where êa;k � ẑ	 k̂? is the Alfvén-wave polarization vec-
tor at wave vector k, k̂? � k?=k?, k? � k� kzẑ, and
êf;k � êa;k 	 k=k. The Alfvén-wave amplitude is given by
a�k � va;k � ba;k, and (since �� 1) the fast-wave ampli-
tude is given by f�k � vf;k � bf;k. Upon neglecting non-
linear terms in the momentum and induction equations, one
obtains @a�k =@t � �ikzvAa

�
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�
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����������
4��
p

is the Alfvén speed. Alfvén waves
have frequencykzvA and propagate along magnetic-field
lines. Fast waves have frequency kvA and can propagate
in any direction. The vs;kẑ term in Eq. (3) corresponds to
the slow magnetosonic wave, which has a frequency that
approaches zero as �! 0.

Weak turbulence consists of waves whose amplitudes
are sufficiently small that nonlinear interactions between
waves can be treated as a small perturbation to a wave’s
linear behavior. Weak-turbulence theory is based on the
assumptions of random wave phases and approximately
Gaussian statistics [17]. These assumptions are problem-
atic for acoustic turbulence, because sound waves propa-
gating nondispersively in the same direction interact
coherently for long times [17,18]. The same issue arises
for fast waves. However, fast-wave interactions with
Alfvén waves and slow magnetosonic waves limit the
interaction time for pure fast-wave interactions, which
may allow weak-turbulence theory to apply to MHD at
low � even if it does not apply to acoustic turbulence.
Although this issue remains unresolved, weak-turbulence
theory is a valuable starting point for this difficult problem.
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To simplify the analysis, the slow magnetosonic wave is
neglected, the density � is taken to be a constant, and (to
maintain energy conservation when � is held constant) the
v � rv term in Eq. (1) is replaced with vA � rv, where vA

is the part of the velocity associated with Alfvén waves. A
different approach was taken by [19], who included slow
waves but neglected three-wave interactions that did not
involve slow waves. Further work including all the non-
linearities is needed. The Alfvén-wave and fast-wave
26500
power spectra for homogeneous turbulence are defined
through the equations ha�k 
a
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k1�
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k� k1�, and
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f
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k� k1�, where h. . .i denotes an en-

semble average. It is assumed that A�k � A�k � Ak, that
F�k � F�k � Fk, and that ha�k f

�
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�
k f

k1i � 0.

Rotational symmetry about the z axis is also assumed, so
that Ak � A
k?; kz; t� and Fk � F
k?; kz; t�. Taking the
small-� and small-� limits and employing the standard
weak-turbulence approximations, one obtains the wave
kinetic equations,
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where
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M1 � M2 �M3, M4 � M5 �M3, M6 � M7 �M8, M9 �
M10 �M11, M12 � M13 �M14, and M15 � M16 �M17.
The quantities �,  , and � are the angles between ẑ and
the wave vectors k, p, and q, respectively. In the triangle
with sides of lengths k?, p?, and q?, the interior angles
opposite the sides of length k?, p?, and q? are denoted	k,
	p, and 	q, and l � cos	k, m � cos	p, n � cos	q, �l �
sin	k, �m � sin	p, and �n � sin	q. The above form of the
wave kinetic equation makes use of the identities
k? cos
	q � 	p� � q?n� p?m and k? sin
	q � 	p� �
q? �n� p? �m.
The right-hand sides of Eqs. (5) and (6) (the ‘‘collision
integrals’’) represent the effects of resonant three-wave
interactions. The integrals sum over all possible wave
number triads, while the delta functions restrict the sum
to triads satisfying the resonance conditions k � p� q
and !k � !p �!q, where !k is the frequency at wave
number k. The equations M1 � M2 �M3, M4 �
M5 �M3, etc., imply that @Ak=@t (or @Fk=@t) is positive
at any wave number at which Ak (or Fk) vanishes, provided
the spectra are positive at other wave numbers. The wave
kinetic equations thus ensure that the spectra remain posi-
tive (realizability). Since the dissipative terms have not
been included, Eqs. (5) and (6) conserve the energy per
unit massE �

R
d3k
Ak � Fk�=2 and have an equipartition

solution Fk � Ak � constant.
The �
qz� in the collision integral of Eq. (5) is equivalent

to 2vA�
kzvA � pzvA � qzvA� and represents the
frequency-matching condition for resonant interactions
involving three Alfvén waves (‘‘AAA interactions’’). The
part of the collision integral that contains this �
qz� is the
same as the collision integral for AAA interactions in
incompressible MHD. This term represents interactions
between oppositely directed Alfvén waves, in which the
fieldline displacements associated with Alfvén wave pack-
ets traveling in one direction along the magnetic field
[represented by A
q?; qz � 0�] distort Alfvén wave pack-
ets traveling in the opposite direction, transferring energy
to larger k?, but not to larger jkzj [9–12]. At kz � 0, only
the AAA terms contribute to the right-hand side of Eq. (5),
and the steady-state solution A
k?; kz � 0� / k�3

? can be
obtained analytically with the use of a Zakharov trans-
formation, as in the incompressible case [12]. When
A
k?; kz � 0� / k�3

? , and when non-AAA interactions
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FIG. 1. Alfvén-wave power spectrum as a function of k? at
different kz.
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are neglected, a Zakharov transformation yields Ak / k�3
?

for any kz. It can be seen from Eq. (5) that the time scale 
A
for AAA interactions to transfer Alfvén-wave energy from
k? to 2k? is determined by A
k?; kz � 0� and is indepen-
dent of kz, consistent with physical descriptions of the
Alfvén-wave cascade [10,11,20]. If the Alfvén-wave en-
ergy per unit mass 
�vrms�

2 is dominated by wave numbers
of order some characteristic wave number k0, if the spec-
trum is quasi-isotropic at k� k0, and if A
k?; kz � 0� /
k�3
? for k? * k0, then 
A ’ vA=�k?
�vrms�

2� for k? � k0,
as in the incompressible case [10,11].

The terms in the collision integral of Eq. (6) proportional
to �
k� p� q� and �
k� p� q� represent three-wave
interactions involving only fast waves (‘‘FFF interac-
tions’’). As can be seen from the delta functions, FFF
interactions occur only when k is parallel or antiparallel
to both p and q, indicating that these interactions transfer
energy radially in k space. The FFF terms are the same as
the collision integral for weak acoustic turbulence [18], up
to an overall multiplicative factor proportional to sin2�,
and represent a weak form of wave steepening. As sin�!
0, the acousticlike FFF interactions become less efficient
because the fast waves become less compressive. If the
non-FFF terms are neglected, then a Zakharov transforma-
tion can be used to show that Fk � c1g
��k�7=2 is a steady-
state solution to Eq. (6) for any function g
��. When Fk �
c1g
��k�7=2, the energy flux in FFF interactions per unit
mass per unit solid angle in k space, ", can be ob-
tained in the same way as for weak acoustic turbulence
[18], and is given by " � 9�2c2

1sin2�g2c2=16vA, where
c2�

R
1
0 dx ln
1�x��x
1�x���5=2�
1�x�9=2�x9=2�1� ’

26:2. If " were independent of � and non-FFF interactions
were ignored, then g � 1= sin� in steady state. The time
scale 
F for FFF interactions to transfer fast-wave energy
from k to 2k can be estimated by dividing the fast-wave
energy per unit solid angle between k and 2k by the energy
flux ". Ignoring numerical coefficients, one obtains

F � vA=�c1sin2�g
��k1=2� for Fk � c1g
��k

�7=2. If the
fast-wave energy were dominated by wave numbers of
order some characteristic wave number k0, with Fk �
c1g
��k�7=2 for k * k0, then c1 � 
�vrms;F�

2k1=2
0 , where


�vrms;F�
2 is the energy per unit mass in fast waves. In

this case, 
F � vA=�
�vrms;F�
2
k0k�

1=2sin2�g
��� for
k� k0.

The terms in Eqs. (5) and (6) containingM1 throughM17

correspond to three-wave interactions involving both
Alfvén waves and fast waves (‘‘AAF and AFF interac-
tions’’). Such interactions exchange energy between fast
waves and Alfvén waves within resonant wave number
triads. At small �, the frequencies of fast waves and
Alfvén waves are comparable, and AAF and AFF inter-
actions are efficient. For example, if Fk � c1k�7=2sin�1�
and Ak � Fk at small �, then when �� 1 the largest
contribution to @Fk=@t comes from the term proportional
to M13FqFk and is �Fk=
AF, where 
AF � 
15vA sin��=
26500

23�2c1k1=2� to lowest order in �, a time scale that is
� 
F. The energy lost by fast waves in this case is trans-
ferred primarily to Alfvén waves at the same wave number
through the term in Eq. (5) containing M8FpFq. If Ak
grows until Ak � Fk at small �, then the term containing
M13FqFk is cancelled by the term containing M13ApFk to
lowest order in �, largely stemming the loss of fast-wave
energy. AAF and AFF interactions thus act to make Ak ’
Fk at small �. However, the constant-energy-flux solution
Ak ’ Fk / k

�7=2 is unsustainable, because as k increases
energy is lost from the small-� part of k space to high k?
through AAA interactions faster than it is replenished from
small k by FFF interactions (
F / k�1=2, 
A / k�1). The
energy flux in FFF interactions at small � must thus de-
crease with k as fast-wave energy is drained into Alfvén
waves and then transferred out to large k?. This process
causes Fk to steepen relative to k�7=2 at small �, and results
in Alfvén-wave energy at jkzj � k0. On the other hand, for
� * 45�, the frequencies of Alfvén waves and fast waves
differ considerably, and AAF and AFF interactions are
unable to make Ak ’ Fk at k� k0. In this part of k space,
AAA and FFF interactions dominate the right-hand sides
of Eqs. (5) and (6), so that Fk / k�7=2 and Ak � h
kz�k

�3
?

within the inertial range, where h
kz� is some (decreasing)
function of jkzj.

To obtain quantitative solutions for Ak and Fk, Eqs. (5)
and (6) are integrated forward in time numerically with
initial spectra Ak � Fk � k2 exp
�k2=k2

0�. The isotropic
forcing term c3k2 exp
�k2=k2

0� is added to the right-hand
sides of both Eqs. (5) and (6). The dissipation terms
�c4k2Ak and �c4k2Fk are added to the right-hand sides
of Eqs. (5) and (6), respectively, with c3 and c4 chosen so
that in steady state dissipation truncates the spectra at a
wave number that is � k0. The numerical method con-
serves energy to machine accuracy in the absence of dis-
sipation and forcing and will be described in a future
publication. Steady-state spectra at late times are plotted
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FIG. 2. Top panel: power spectra as a function of k at � � 45�.
Bottom panel: power spectra as a function of k at � � 7:1�.
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in Figs. 1 and 2 and are consistent with the qualitative
picture described above. The Alfvén-wave spectra are /
h
kz�k

�3
? for k? � jkzj within the inertial range. At � �

45�, Fk is / k�7=2 and Ak drops off more steeply than
k�7=2. At � � 7:1�, Fk falls off more rapidly than k�7=2

and AAF and AFF interactions keep Ak ’ Fk. The cascade
of fast-wave energy to high frequencies was found previ-
ously by [21]. In contrast to this Letter, these authors found
an isotropic k�7=2 fast-wave spectrum.

The phenomenology described above can be applied
more generally. For example, if the z component of the
phase velocity, vph;z, were initially positive for all the
excited waves, and if there were no mechanism for gen-
erating Alfvén waves with kz � 0 and vph;z < 0, then there
would be no AAA interactions. In this case, FFF interac-
tions would still transfer fast-wave energy to high frequen-
cies, and AAF and AFF interactions would still cause Ak
and Fk to become approximately equal at small �, but the
Alfvén-wave energy would not be swept out to large k? by
AAA interactions. For waves with vph;z > 0, one would
thus expect Fk to obtain a constant-energy-flux k�7=2 scal-
ing for all � with Ak ’ Fk at small �. As a second example,
if the initial excitation were primarily in Alfvén waves, as
may be the case in the corona [3], and if Ak were quasi-
isotropic at k� k0, then AAF and AFF interactions would
26500
generate significant fast-wave energy at k� k0, and FFF
interactions would subsequently transfer fast-wave energy
to higher frequencies. As a final example, if �vrms � vA
but the Alfvén waves at small jkzj became strongly turbu-
lent at k? larger than some transition wave number ktr, as
in [10], then collisions between oppositely directed Alfvén
wave packets would still transfer Alfvén-wave energy at
any kz to larger k?, but the cascade time for this process
at k? > ktr would change from 
A to a new value, 
A;str /

k�2=3
? [10]. The Alfvén waves in most of k space and the

fast waves would still be weakly turbulent because the
linear periods of these waves would still be much shorter
than the nonlinear time scales, and much of the weak-
turbulence picture would still apply. In particular, Fk would
be / k�7=2 for � * 45�, and Ak and Fk would be steeper
than k�7=2 at small � and large k since 
A, 
A;str, and 
AF
are� 
F in that part of k space.
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