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Double-Gap Alfvén Eigenmodes: Revisiting Eigenmode Interaction with the Alfvén Continuum
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A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization
is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two
solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak
plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the
continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous
at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes
allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core
region is conventionally considered inaccessible. Implications include new approaches to heating and
current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.
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Introduction.—It is known that in toroidal plasmas, ideal
magnetohydrodynamic (MHD) equations possess global
solutions associated with gaps in the shear Alfvén contin-
uum [1–4]. Each gap plays the role of an effective potential
well for the global eigenmode solution that is produced by
the coupling of poloidal harmonics due to either toroidal
tokamak geometry or the noncircularity of its cross section.
Normally, global solutions are localized within one gap
and it is generally believed that if the mode is propagating
from the gap to the continuum it is strongly damped due to
the interaction with the absorbing layers at the resonances
with the continuum [3–5]. This assumption is fundamental
to the current understanding of global Alfvén eigenmode
solutions in fusion plasmas.

In this Letter we show that this commonly held view is
incorrect in certain plasma regimes with important impli-
cations for fusion scale experiments. A new type of global
shear Alfvén eigenmode [called double-gap Alfvén eigen-
mode (DGAE)] is found when two gaps are separated by a
continuum associated with only one poloidal m � ms har-
monic, where it has a singular point. This situation is
particularly important for stellarator configurations where
it is assumed that global mode solutions are suppressed due
to coupling between modes with different toroidal mode
numbers [6]. In tokamak plasmas it is also common to have
radial continuum patterns that would conventionally be
considered to prevent the establishment of global eigen-
modes [3,4]. Damping on the continuum may affect the
stability of shear Alfvén eigenmodes in a tokamak reactor,
which, in turn, affects the confinement of energetic fusion
products, � particles. Also the absorption by the contin-
uum prevents externally excited low frequency Alfvén
waves from being used for plasma heating and current
drive as only the plasma periphery is affected [7,8]. By
contrast, DGAEs can potentially couple the plasma edge to
the core with implications for fast ion transport, heating,
and current drive, and the use of external antennas as a
diagnostic of the plasma core.
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The DGAE can be understood by analogy to the
Shrödinger equation with two adjacent potential wells
[9]. The only difference is that in our case two solutions
are separated by a potential barrier with an absorbing layer,
where if any combination of the single well solutions has
finite amplitude at that layer the mode is damped.
Qualitatively a nondamped eigenmode solution can be
constructed since we require that the continuum is de-
scribed by the singularity of only one harmonic at a given
radial location. If the singular harmonic has a node at the
point of its singularity then an undamped global eigen-
mode can exist. This will be confirmed by detailed numeri-
cal analysis hereafter.

In a tokamak plasma one well-known example of the gap
eigenmode is the toroidicity-induced Alfvén eigenmode
due to coupling between m and m� 1 poloidal harmonics.
This coupling produces the localized solution [toroidicity-
induced Alfvén eigenmodes (TAE) [1]] at the q � �2m�
1�=2n surface, where q is the safety factor and n is the
toroidal mode number. Another kind of gap in the Alfvén
continuum is due to the ellipticity-induced coupling, which
results in the ellipticity-induced Alfvén eigenmodes
(EAEs) [2] (see also noncircular Alfvén eigenmodes
[10]). Within the ideal MHD framework the interaction
with the continuum and thus its contribution to the damp-
ing rate can be calculated by making use of the perturba-
tion technique, which requires that the damping rate is
smaller than the mode frequency [4]. A kinetic treatment
of this problem is possible by including finite Larmor
radius effects in order to resolve the nonideal resonant
layer in which the kinetic shear Alfvén wave absorbs
energy propagating from the ideal region [5]. For weakly
damped EAE/TAE solutions to exist, the mode radial
structure should be in the evanescent (low amplitude)
region where it resonates with the continuum in order for
the damping rate to be weak.

The particular case considered in this Letter corresponds
to a tokamak plasma with a reversed magnetic safety factor
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profile. The shear Alfvén continuum for this case is shown
in Fig. 1 where TAE, EAE, and beta-induced AE (BAE)
[11] gaps are indicated as functions of the radial variable,
chosen as the square root of the normalized poloidal field
flux � � � = 0�

1=2,  0 is the flux value at the plasma edge.
The frequency on this figure is normalized to the Alfvén
frequency, !A � ��0�=qaR0, where �A�0� is the central
Alfvén velocity, qa is the edge safety factor, and R0 is
the major radius of the plasma cross section geometrical
axis. This gap and the new solution are obtained and will be
analyzed numerically using the ideal MHD code NOVA

[1,12]. When the EAE and TAE gap solutions interact
with each other a new solution, DGAE, is formed. We
elaborate on the formalism in order to understand why a
singularity is not developed in the radial mode structure. In
this case the energy between EAE and TAE parts of the
DGAE solution is exchanged via the sideband ms � 1, �2
poloidal harmonics. In some sense the situation is also
analogous to holding the string at the node of its oscilla-
tions so that the energy does not dissipate at the zero
amplitude point of the node.

Numerical solution.—For efficient interaction of solu-
tions corresponding to different gaps, we choose plasma
parameters in such a way that parts of EAE and TAE gaps
are aligned radially. The chosen safety factor profile is
shown in Fig. 2 along with the plasma beta and density.
Other plasma parameters used in the simulations are: a
major radius of the geometrical center of R0 � 3 m, a
minor radius of a � 1 m, a plasma central beta of �p�0� �
5%, last closed magnetic surface ellipticity of 1.8, and a
triangularity of 0.3. The numerical method of the ideal
MHD code NOVA is based on the poloidal harmonic repre-
sentation for the poloidal dependence of the solution and
Ω
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FIG. 1 (color online). Shear Alfvén continuum for n � 8 in the
reversed shear plasma with the safety factor profile shown in
Fig. 2. EAE, TAE, and BAE gaps are indicated. The DGAE
solution radial extension is shown for the mode frequency
�2 � 4:8.
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third order polynomial finite elements in the radial direc-
tion [12]. DGAE poloidal harmonic radial structure of the
quantity ��n, where �n is the plasma displacement com-
ponent normal to the magnetic surface, is shown in Fig. 3.
The eigenmode has the resonance with the continuum at
� � 0:67. As one can see from Figs. 3(a) and 3(b), where
the radial structures of three dominant (near resonance)
harmonics are magnified, the solution is regular every-
where despite this resonance. Other solutions obtained
numerically, such as TAEs, typically show jumps at the
resonances. The convergence study was performed by
gradually changing the number of radial grid points from
150 to 250 and showed that the solution is not sensitive to
the grid size. To understand why there are no singularities
at the continuum, i.e., where coefficients in front of the
second derivative vanish and how this affects DGAE damp-
ing, we perform the analysis of the solution in the next
section.

Analysis.—In this section we study the interaction of the
DGAE with the continuum by making use of a flux func-
tion [4] that is continuous through the resonance. It was
shown in Ref. [4] that the interaction with the continuum
results in jumps of the perturbed amplitudes and it was
proven that such interaction leads to the damping. In other
words, jumps in the mode structure depend on how strong
the interaction with the continuum is. As we can see in our
case, there are no jumps in the real mode structure that
suggest the interaction with the continuum is weak.
Examine the continuation of the solution into the complex
plane.

Ideal MHD equations can be reduced to a system of
second order differential equations, which in the matrix
form [12] serve as a basis for the numerical procedure of
the NOVA code:

d
d�

�
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d
d�

�
�
� B

d
d�

�� C��
d
d�
�D�� � 0; (1)

where A���; B���; C���; D��� are matrixes dependent on
FIG. 2 (color online). The plasma safety factor, beta, and
density profiles used in NOVA simulations.
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FIG. 3 (color online). DGAE poloidal harmonic radial structures for n � 8 (a). (b) Represents the magnified radial structure of
m � 20–22 harmonics near the resonance with the continuum, � � 0:67. Also shown in (b) is �A�1C�ms

� d�m=d�, ms � 21.
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the equilibrium plasma parameters and ���� is the vector of
the amplitudes of the poloidal harmonics of the normal to
the magnetic surface radial displacement of the plasma.
Exact expressions of the matrixes from Eq. (1) are com-
plicated [1,12] and are not required for the purpose of our
analysis. One important property of matrix A is that the
surface at which its determinant is vanishing ( k A��s� k�
0) defines the location of the Alfvén continuum, �s �
�s���. We also note that k B�D k� 0 at �s [1,12]. At
this location the solution to Eq. (1) is also expected to be
singular [5] and therefore to damp on the continuum.
Figure 4 shows radial dependencies of three diagonal
elements of matrix A, Amm;m � ms, ms � 1, ms � 21 in
the vicinity of the resonant point. Calculations show that �s
in this case almost coincides with the solution of the
equation Ams;ms

��� � 0, which is � � 0:67 ’ �s.
Consider the introduction of a flux vector function simi-

lar to the one in Ref. [4], which, as we will see, is continu-
ous across the resonance � � �s:

Ĉ � A
d
d�

�: (2)

This equation should be complemented by the equation for
the flux following from Eq. (1):
(a)

FIG. 4 (color online). Diagonal elements of the matrix of the co
Amm;m � 20–22, (a). (b) Represents flux vector-function elements
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Ĉ � �B
d
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�� C��
d
d�
�D��: (3)

If we assume that d k A k =d� � 0 at �s, then Eq. (2) can
be formally inverted and by integrating it in the vicinity of
�s, one can conclude that � has a logarithmic singularity.
From Eq. (3) it follows that Ĉ is indeed continuous at the
resonance. This is confirmed in Fig. 4(b), which shows
three elements, ms;ms � 1, of the flux vector having regu-
lar radial dependencies at the resonance. Note that the
inversion of Eq. (2) gives a continuous radial derivative
of � (despite vanishing k A k ) shown in Fig. 3(b).

Nevertheless, regardless of the fact that the solution is
continuous at the resonance, it is not clear whether the
mode does not damp on the continuum. This is because the
procedure of finding such damping requires an analytic
continuation of the solution and its frequency onto the
complex plane, whereas the code only finds the real solu-
tion and frequency.

Vector Ĉ can be used to show that in this case there is no
continuum damping of the DGAE mode, i.e., the interac-
tion with the continuum is weak. We invert Eq. (2) under
the assumption of finite first derivative of the determinant
of the matrix A at the resonance. The solution of Eq. (1) is
found by the perturbative technique. Consider �0 and !0
^

(b)

efficients at the second derivatives in the eigenmode equation,
, Ĉm, for poloidal harmonics m � 20; 21; 22.
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being the unperturbed solution and eigenfrequency and �1

and !1 being their complex corrections, which take into
account the jump in the solution at the continuum.
Multiplying Eq. (1) by � from left, integrating it over the
minor radius and requiring zero boundary condition, we
obtain

!1 �

�
@G�!0�

@!

�
�1
��1��s � "� � �1��s � "�	

TĈ0; (4)

where G�!0� �
R
d����d�0=d��TAd�0=d��

��0�
TBd�0=d�� ��0�

TC�0 � �d�0=d��
TD�0	, �
 �s is

small and is introduced to define the possible jump of the
imaginary part of the solution at the resonance. To find it
we integrate inverted Eq. (2) and make use of the causality
condition, which for the imaginary part of the jump gives

=��1��s � "� � �1��s � "�	

� ��
kAk�sA

�1Ĉ0

j@kAk=@�j�s
sgn�@kAk=@!��s ;

so that Eq. (4) can be written in the form

=!1 � ��
�
@G�!0�

@!

�
�1

�
kAk�sĈ

T
0A
�1Ĉ0

j@kAk=@�j�s
sgn�@kAk=@!��s : (5)

This allows us to compute the continuum damping. It
follows from simulations that the damping is indeed small
=!1=! < 10�5, which also means that the interaction
with the continuum is weak.

Conclusions.—We have shown that the ideal MHD set
of equations has solutions propagating across the contin-
uum without interacting with it. The continuous solution at
the resonance with the continuum results in vanishing
continuum damping. This is opposite to the common
understanding that the mode experiences strong interaction
with the continuum if it has finite amplitude at the reso-
nance. The condition for such modes to exist is that they
should intersect the continuum only once in the vicinity of
the resonance. Such resonance in the considered example
is at the radial node of the eigenmode solution at the
26500
location of the singularity. This can be viewed as an
eigenmode solution for the case of two adjacent potential
wells separated by the barrier with localized absorbing
layer. Note that the interaction with the continuum can
be avoided even for the global TAE modes near the plasma
edge if the TAE gap is closed in the radial direction.

We note that weakly damped DGAE cavity modes can
reach into to the center of the plasma and hence can
potentially be used for current drive and Alfvén wave
heating for applications in laboratory and space plasmas.
In addition, being global and weakly damped, DGAEs can
be more unstable and easily excited by the super-Alfvénic
fast ions, such as energetic fusion products, � particles,
which, in turn, affects �-particle confinement. Interaction
with the continuum also may be important for the stability
of various Alfvén eigenmodes in stellarator plasma due to
its complicated geometry and extra coupling between the
modes with different toroidal mode numbers.
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