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Regimes of Terminal Motion of Sliding Spinning Disks
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Analysis of the frictional motion of a uniform circular disk of radius R sliding and spinning on a
horizontal table reported by Farkas et al. [Phys. Rev. Lett. 90, 248302 2003] shows that the disk always
stops sliding and spinning at the same instant with a terminal speed ratio �0 � v=R! � 0:653. We show
that different terminal behaviors can be found when one considers the motion of a two-tier disk with lower
section thickness H1 and radius R1, and upper section thickness H2 and radius R2. The terminal motion
may be analyzed in terms of the normalized radius of gyration k. It is found that while translation and
rotation cease simultaneously, their terminal ratio �0 either vanishes when k >

��������
2=3

p
, is a nonzero constant

when 1=2< k<
��������
2=3

p
, or diverges when k < 1=2. Experiments performed with plastic disks sliding on a

nylon fabric stretched over a horizontal plate qualitatively corroborate the three different types of terminal
motion.
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Farkas et al. [1], motivated by problems in the compac-
tion of a dry powder of faceted particles [2–4], describe a
new and interesting aspect of the motion of a circular disk
sliding and spinning across a flat surface with Coulomb
friction. For a disk of radius R sliding with velocity v and
spinning with angular rotation rate !, it was proven that
sliding and spinning cease at the same instant. Moreover,
the coupling between the sliding and spinning motions
continuously focuses the speed ratio � � v=!R toward
its terminal value �0 � 0:653, regardless of the nonzero
initial conditions on v and!. The analysis is predicated on
a near uniform normal stress acting across the surface of
the disk during deceleration. The above results have been
reviewed by Halsey [5].

Our interest in this problem stemmed from demonstra-
tions of the phenomenon at coffee shops and beer parlors.
Coins and bottle tops indeed appear to stop sliding and
spinning at the same time. But when an eyeglass case was
launched across a table, it inevitably stopped translating
first, and then spun down to rest. This was not attributed to
the oblong shape of the case, but rather to the fact that it
was slightly bowed concave upward, and hence its contact
with the table is localized to a small area at the center of the
case. This provided the motivation to study alternative
geometries that will (i) stop sliding first and then spin
down to rest, or (ii) stop spinning first and then slide to
rest. The vehicle of demonstration is a small aspect ratio
two-tier disk, although, as will be noted later, the results
obtained are quite general.

The notation in [1] is closely followed to compute the
force and torque acting on generic sliding and spinning
disks retarded by dry friction. The Coulomb friction law
states that the magnitude of the local friction force is
proportional to the local normal force and acts opposite
to the local relative velocity between surfaces in contact.
For a uniform normal stress, the friction force on a sliding-
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spinning disk is given by

F � �
�Fn
A

Z
A

v�!� r

jv�!� rj
dS; (1)

where r is the radius vector from the center of the disk, v is
the linear velocity of the disk,! its angular rotation rate,�
the friction coefficient, A the disk area in contact with the
horizontal surface, and Fn � mg is the normal force where
m is the mass of the disk and g is the gravitational accel-
eration. Similarly, the friction torque is

T � �
�Fn
A

Z
A
r�

v�!� r

jv�!� rj
dS: (2)

Evaluation of (1) and (2) for a uniform disk of radius R by
Farkas et al. [1] gives F � �FnF ���ev and T �
�FnRT ���e!, where ev � v=v is the unit vector in the
direction of translation, e! � !=! is the unit vector nor-
mal to the disk, and F ��� and T ��� are given in terms of
complete elliptic integrals K��� and E���. The functions
F ��� and T ��� reported in [1] are in error, even though the
plots given in their Fig. 2 are correct. The correct results
using the notation in [6] are

F ��� �

(
4

3�
��2�1�E��2����2�1�K��2�

� � � 1
4

3�
��2�1�E�1=�2����2�1�K�1=�2�

� � � 1
(3a)

and

T ��� �

(
4
9
�4�2�2�E��2����2�1�K��2�

� �� 1
4�
9
�4�2�2�E�1=�2���2�2�5�3=�2�K�1=�2�

� �� 1
: (3b)

The motion of the disks is governed by the scalar linear
and angular momentum equations
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FIG. 1. Curves f��� for the composite disk at selected values
of k. The curves shown are for k3 � 2:0, k2 � 1:2, k1 �

��������
2=3

p
,

k0 � 1=
���
2
p

, k�1 � 0:60, k�2 � 1=2, k�3 � 0:40, and k�4 �
0:10. The dashed curve for k1 has zero slope at the origin; the
dash-dot-dash curve for k�2 has zero slope at infinity; and the
solid curve for k0 � 0:653 corresponds to a pure disk.
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F � m
dv
dt
; (4a)

T � I
d!
dt
; (4b)

in which I is the polar moment of inertia of the disk.
In the axisymmetric two-tier disk of uniform density �

being considered, the lower and upper tiers have radii R1

and R2 and thicknessesH1 andH2, respectively. Hence this
geometry is characterized by two dimensionless parame-
ters, the radius ratio � � R1=R2 and the thickness ratio
� � H1=H2. For this configuration

m����H1R2
1�H2R2

2�; I�
��
2
�H1R4

1�H2R4
2�: (5)

Evaluation of integrals (1) and (2) gives

F � ��mgF ���ev ;(6a)

T � ��mgR1T ���e!;(6b)

where � � v=!R1 is the speed ratio. Using the results in
(6), the governing equations of motion (4) are

dv
dt
� ��gF ���; (7a)

d!
dt
� �

2�g
R2

�
�2�� 1

�4�� 1

�
�T ��� (7b)

Scaling (v, !, t) with (�
���������
R1g
p

, �
�����������
g=R1

p
,

�����������
R1=g

p
) we

obtain

dv	

dt	
� �F ���; (8a)

d!	

dt	
� �

2�2��2�� 1�

��4�� 1�
T ���; (8b)

where variables with an asterisk are dimensionless.
Dividing (8a) by (8b) and making the change of variables
x � � ln!	 gives

f��; k� 

d�
dx
� �� k2 F ���

T ���
: (9)

Using (5) we find that k in (9) is, in fact, the radius of
gyration of the composite disk normalized by the radius of
the contact disk, viz.

k �
1

R1

����
I
m

s
�

�����������������������������
��4�� 1�

2�2��2�� 1�

s
: (10)

Consequently, the �-� two-parameter family of solutions
may be analyzed solely in terms of the single parameter k.
Using MATHEMATICA [7] we plot in Fig. 1 curves f��� at
selected values of k, and note that the range of k is �0;1�.
The curve for k � k0 � 1=

���
2
p

corresponds to the pure disk
with attractive fixed point at the �0 � 0:653 zero crossing
of f���. We investigate the terminal motion of two-tier
disks by increasing or decreasing k from this value. As k
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increases, the fixed point at �0 � 0:653 slides to the left
and eventually hits the origin when f��� becomes tangent
to the horizontal axis as indicated by the dashed curve for
k1 �

��������
2=3

p
. Increasing k above this critical value gives

curves pinned to the origin such as those marked k2 and
k3 in Fig. 1. Thus for all values k >

��������
2=3

p
, the fixed point

lies at �0 � 0.
We now decrease k below the pure disk value k � k0.

Then the attractive fixed point slides to the right to the zero
crossing of the curve marked k�1. With further decrease in
k, the fixed point moves off to infinity when k � k�2 �
1=2 displayed as the dash-dot-dash curve in Fig. 1, at
which point f��� is tangent to the horizontal axis at infinity.
At still lower values, like k�3 and k�4, the f��� curves lift
off the horizontal axis with ever increasing slope at the
origin. Thus for all k < 1=2, the fixed point lies at �0 � 1.

Setting f��0; k� � 0 in (9) furnishes the connection be-
tween the radius of gyration and the terminal values �0,

namely k �
���������������������������������
�0T ��0�=F ��0�

q
. This variation of k with �0

is shown in Fig. 2 in which the dot represents the pure disk
result.

Consider the fundamental state to be one for which �0 is
a nonzero constant. Transitions from this state to the two
other terminal motion states are readily found in �-�
space. For example, the transition to terminal motion re-
gime �0 � 0 is obtained by setting k �

��������
2=3

p
in Eq. (10),

which thereby yields the transition boundary

� �
3� 4�2

�4 : (11)

The � � 0 intercept of this transition occurs at � �
���
3
p
=2,

and � �3=��1=4 ! 0 as �! 1.
3-2



 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.5  1  1.5  2  2.5  3

FIG. 2. The variation of k with terminal motion velocity ratio
�0. The solid dot represents a pure disk.
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The transition to terminal motion regime �0 � 1, ob-
tained by setting k � 1=2 in Eq. (10), gives the transition
boundary

� �
�2 � 2

�4 : (12)

The � � 0 intercept of this transition occurs at � �
���
2
p

and there exists a turning point at � � 1=8 where � � 2.
Above the turning point � 1=�2 ! 0 as �! 1. These
transition boundaries are displayed in Fig. 3.

Scrutiny of the solutions shows that, mathematically, all
three regimes exhibit the feature that rotation and trans-
lation stop simultaneously. This can be understood by
examining the governing dynamical equations as �! 0
and �! 1. For example, the series expansions for K���
and E��� in [6] give the leading developments F ���  �
and T ���  2=3 as �! 0. Inserting these results into (8a)
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FIG. 3 (color online). Contours of �0 in �-� space for the two-
tier disk where solid diamonds show values of disks constructed.
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and (8b) and solving the coupled equations gives the
terminal translational and rotational velocity behaviors in
the �0 � 0 regime

v	 � C1�t
	
f � t

	�3k
2=2; (13a)

!	 �
2

3k2 �t
	
f � t

	�; (13b)

where C1 is a constant and t	f is the common terminal time.
Similarly, determination of the asymptotic behaviors of
F ��� and T ��� as �! 1 may be used to find the terminal
behaviors in the �0 � 1 regime

v	 � �t	f � t
	�; (14a)

!	 � C2�t	f � t
	�1=4k2

; (14b)

where C2 is a constant. From Eqs. (13) and (14), it can be
seen that both v	 and!	 are zero only at t	 � t	f. However,
!	 in (13) and v	 in (14) approach the zero point linearly
with time, while their counterpart motions assume very
small values before t	 � t	f.

To explore the terminal motion in the three regimes, we
developed an experiment on a flat aluminum optical table
4 feet wide and 10 feet long. A Plexiglas sheet of uniform
thickness 0.25 in. with planform dimensions 2� 10 feet
was fixed to the central section of the optical table using
strips of double-sided adhesive tape less than 0.001 in. in
thickness. Untreated nylon fabric was stretched tightly
across the Plexiglas sheet and taped around its perimeter
to the optical table. Motion was captured with an Olympus
i-Speed camera at 100 frames= sec using an overhead
mounting and a 45� mirror system. The camera imaged a
foot-wide strip of the final four feet of the sliding surface
illuminated by high intensity lamps.

Since the simple theory is predicated on disks having
nearly uniform stress over the surface of contact, we need a
criterion for its applicability. Effectively, the line of action
of the normal force radially shifts a distance �R from the
center of mass toward the front of the disk due to the
deceleration caused by sliding friction. Application of
Newtonian dynamics gives this shift as

�R �
�H2

2

�
�2�2 � 2�� 1

�2�� 1

�
(15)

and the stress over the contact surface will be nearly
uniform when �R=R1 is a small quantity.
TABLE I. Geometric characteristics of the two-tier disks used
in the experiments.

R1 (in) H1 (in) � � k �R=R1 �0

disk 1 1.15 0.040 0.10 0.50 1.401 0.082 0
disk 2 2.00 0.875 0.10 1.00 0.707 0.171 0.653
disk 3 2.00 0.075 0.10 1.25 0.587 0.079 0.970
disk 4 2.20 0.100 0.10 2.00 0.482 0.081 1
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FIG. 5. Collages of the terminal motion of three disks. The
horizontal expanse and time intervals between frames are: 29 in.
and 0.67 sec for disk 3; 21 in. and 1.00 sec for disk 1; 27 in. and
0.43 sec for disk 4.
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FIG. 4. Experimental data on the terminal behaviors of � for
disk 1 (squares), disk 2 (triangles), and disk 4 (circles). The solid
lines are faired curves through the trajectory data.
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The solid diamonds in Fig. 3 and the tabulated values in
Table I show the radius ratios � chosen to sample regions
of terminal motion along the line � � 0:1.

The composite disks were designed to have the same
nominal value of �R=R1 ’ 0:1. The disks were fabricated
from polyvinyl chloride (PVC) and their contact surfaces
were sanded flat on a machinist’s stone using successively
finer grades of emery cloth. The actual dynamic friction
coefficient, determined as the average of measurements
made using all four disks, was � � 0:39� 0:05. In addi-
tion to the geometrical disk properties listed in Table I, we
have included the values of �R=R1 (determined using � �
0:39) and the theoretical values of �0. We observed two
forces acting on the sliding disks in addition to Coloumb
friction. Static electricity built up after a PVC disk slid
across the nylon surface. This effect was minimized by
grounding the disk to the aluminum table before each run.
A more serious concern was the stiction force that develops
between closely mating surfaces. To minimize stiction
effects, we selected a nylon fabric with a coarse weave
and thus the value � � 0:39 quoted above. Although the
stiction force must modify the motions of the disks, par-
ticularly in the terminal phase where the stiction has maxi-
mum effect due to the decreasing inertia of the disk, the
disks seldom failed to stop in the terminal motion regime
for which they were designed. Figure 4 gives experimental
data for disks 1, 2, and 4, showing the evolution of �with t	

near their terminal stopping points. The data in Fig. 4 offer
only qualitative corroboration of the theory since the un-
known contributions of stiction force and nonzero values of
�R are active.

Snapshots of the terminal motion for disks 1, 3, and 4 are
shown in Fig. 5. Each collage contains identical sections of
the table viewed from above as a disk travels right to left.
Figure 5(a) shows composite disk 3 which simultaneously
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stopped sliding and spinning 0.23 sec after frame (h).
Figure 5(b) shows composite disk 1 which stopped sliding
0.70 sec after frame (f) and ceased spinning 0.77 sec after
frame (k). Figure 5(c) shows disk 4 which stopped spinning
0.23 sec after frame (g) and ceased sliding 0.13 sec after
frame (l).

In conclusion, we note that multitiered disks also have
terminal regime motions governed by k. In the limit as the
tier heights become infinitesimally small, one approaches
axisymmetric disk shapes with continuous section profiles
which again have terminal motions governed by the nor-
malized radius of gyration. Hence the present analysis is
applicable to any axisymmetric geometry, devoid of holes,
sliding and spinning with a flat area of contact. Results for
disks with holes will be reported in a forthcoming
publication.
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