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We demonstrate via numerical simulation that in the strongly nonlinear limit the �-Fermi-Pasta-Ulam
(�-FPU) system in thermal equilibrium behaves surprisingly like weakly nonlinear waves in properly
renormalized normal variables. This arises because the collective effect of strongly nonlinear interactions
effectively renormalizes linear dispersion frequency and leads to effectively weak interaction among these
renormalized waves. Furthermore, we show that the dynamical scenario for thermalized �-FPU chains is
spatially highly localized discrete breathers riding chaotically on spatially extended, renormalized waves.
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The Fermi-Pasta-Ulam (FPU) lattice was introduced in
their classical work [1] to address fundamental issues of
statistical physics such as equipartition of energy, ergodic-
ity. The attempt to resolve the mystery of the FPU recur-
rence (the system did not thermalize as was expected but
rather kept returning to the initial state [1]) has spurred
many great mathematical and physical discoveries, such as
the celebrated Kol’mogorov-Arnol’d-Moser theorem and
soliton physics [2]. Despite this remarkable progress, there
are still fundamental open questions that are under vigo-
rous debate [3], such as what is the route to thermalization
and how to fully characterize the thermalized �-FPU
system. Furthermore, in the last decade discrete breathers
(DBs) as spatially localized, time periodic lattice excita-
tions were discovered [4]. Arising from energy localization
in nonlinear lattices, they play important roles in fiber
optics, condensed matter physics, and molecular biology
[5]. The existence of DBs has been addressed rigorously
[6]. Important conceptual issues naturally arise, such as
what is the role of DBs on the route to equilibrium [7] and
how do they manifest in thermalization of the FPU system?
Resolution of these issues will certainly provide deep in-
sight into the fundamental understanding of route to ther-
malization for general nonlinear physical systems. Most of
the results regarding DBs in �-FPU chains have so far only
addressed their behavior in the transient state of weakly
nonlinear regimes before thermalization occurs [8,9].

In this Letter, we investigate the FPU dynamics in the
strongly nonlinear limit. We demonstrate that, quite sur-
prisingly, even for strong nonlinearity, the �-FPU system
in thermal equilibrium behaves like weakly nonlinear
waves in properly chosen variables. Such behavior results
from the collective effect of strongly nonlinear interactions
effectively renormalizing linear dispersion relation. This
observation enables us to use a well-developed weak tur-
bulence (WT) formalism [10] for the description of the
�-FPU chains even in a strongly nonlinear regime.
Furthermore, in addition to the nonlinear waves, we ob-
serve the DB excitations in the thermalized state of �-FPU
chains. Previously such DBs were observed only during
transient stages towards thermalization [8]. Here we show
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via numerical simulation that DBs actually persist and
coexist with renormalized waves in the thermalized state.
Thus, in the thermalized �-FPU, there are two kinds of
quasiparticle excitations, one localized in k space as re-
normalized nonlinear waves or phonons, and the other
localized in x space as DBs.

The �-FPU chain is described by the Hamiltonian

H � H2 �H4; H2 �
1

2

XN

i�1

p2
i � �qi � qi�1�
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with periodic boundary conditions, where � is a nonlinear
parameter and pi and qi are the ith particle momentum and
displacement from the equilibrium position, respectively.
In terms of Pk and Qk, the Fourier transforms of pi and qi,
the Hamiltonian becomes

H �
1

2

XN�1

k�1

�jPkj
2 �!2

kjQkj
2� � V�Q�; (2)

where !k � 2 sin�kN is the linear dispersion frequency and
V�Q� is the Fourier transform of H4. V�Q� is a linear
combination of various quartic products of Qk’s and
Q�k’s. We numerically integrate the canonical equations
of motion for Hamiltonian (1) to study possible dynamical
scenario of the FPU [11]. Since the thermalized state is our
primary interest we chose random initial data [11]. Note
that the behavior of the �-FPU in equilibrium is fully
characterized by only one parameter �H [13] where H is
the total energy of the system. We fixed H � 200 and N �
128 (except for Fig. 6, where N � 1024) and varied �.

First, for the FPU system in thermal equilibrium [14],
with moderate and strong nonlinearities � � 1, 8, and 32,
we measured the power spectrum hjakj2i as a function of
!k, where ak � �Pk � i!kQk�=

���������
2!k
p

and h	 	 	i denotes
the time averaging. Although it was expected that, for
weak nonlinearity, hjakj2i � T=!k, where T is an effective
temperature (Rayleigh-Jeans distribution for waves [10]),
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it is surprising to find that the same scaling holds even for
strong nonlinearities as shown in Fig. 1. To understand why
hjakj2i scales as !�1

k even in the strongly nonlinear limit,
we computed the !-k spectrum of ak�t� as shown in
Fig. 2(a). In the weakly nonlinear limit the spectrum would
have resonant peaks along a curve given by the linear
dispersion relation !k � 2 sin�k�=N�. We observe that,
when the nonlinearity is no longer small, the resonances
move to higher frequencies, as the dispersion relation is
renormalized by the nonlinear part V�Q�. The renormal-
ized dispersion relations is indicated by the sinelike struc-
ture of the resonance peaks [the solid line in Fig. 2(a)]. We
verified numerically that the main contribution of the non-
linear potential energy (
80%) comes from the terms
QkQlQ�mQ�s constrained on k� l � m� s. We note that
when k � m and l � s or k � s and l � m, these terms can
be combined with the quadratic part of (2) to effectively
renormalize the frequency !k. More specifically, Hamil-
tonian (2) can be rewritten as the sum of a new renormal-
ized quadratic part and a remaining nonlinear part: H�
~H2� ~H4, where ~H2�

1
2

PN�1
k�1 �jPkj

2� ~!2
kjQkj

2� with the
renormalized dispersion relation

~! k � �!k; � �

�������������������������������������������������
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2N
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l�1

hjQl�t�j
2i!2

l

vuut : (3)

Note that the frequency renormalization factor � does not
depend on k. Figure 2(b) shows how the renormalized
frequency ~!k depends on �. The upper curve was pro-
duced from the numerical spectrum—the abscissas of the
peaks of the sinelike curves were measured [e.g., from
Fig. 2(a) for � � 1, !k�N=2 � 3:3 for N � 128]. The
curve with pluses was obtained using Eq. (3). Both seem
to possess a scaling
�0:2 dependence [see Fig. 2(b)]. The
discrepancy between the analytical and numerical curves
can be attributed to the fact that in the derivation of (3) we
took into account only 4-wave processes. In principle, we
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FIG. 1 (color online). Power spectra for the thermalized state
for relatively strong nonlinearity � � 1 (dots), � � 8 (circles),
and � � 32 (pluses). The thick solid line is 1=!k. Time window
T � 105 was used for averaging the power spectrum.
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can take into account higher order processes to obtain a
more accurate analytical estimate of �.

To further study the renormalization of interactions we
measured the ratio of the quartic to the quadratic parts of
the energy before and after renormalization procedure (i.e.,
H4=H2 vs ~H4= ~H2) for different values of � with energy
fixed [Fig. 2(c)]. This figure also shows that the effective
renormalized linear part becomes more dominant. There-
fore, even for strongly nonlinear regimes, with � as large
as 128, the renormalized waves (or purely nonlinear pho-
nons) have weakened interactions. Note that the resonance
of ak�!� has a finite width [shown with the dashed lines in
Fig. 2(a), which are the level of

R
jakj2�!�d!=max!jakj2

for each k]. Note that for k � N=2 (the highest mode in
the system) the resonances become the broadest. Accord-
ing to WT [10], the energy exchange among waves occurs
on the resonance manifold given by k1 � k2 � k3 � k4 and
!k1
�!k2

� !k3
�!k4

. Although one can show that there
are no exact resonances in �-FPU chains on the discrete
lattice, the nonlinearity induced near resonance inter-
actions (i.e., j!k1

�!k2
�!k3

�!k4
j< �, where � is a

resonance width) can occur. This allows us to use the WT
theory if the interaction is considered to be weak. In or-
der to characterize the system as weakly nonlinear waves,
the renormalized waves are described by the new nor-
mal variables ~ak � �Pk � i ~!kQk�=

���������
2 ~!k
p

. The relationship
between bare ak and renormalized ~ak is ak � ��

����
�
p
�

1=
����
�
p
�~ak � �

����
�
p
� 1=

����
�
p
�~a��k�=2. Under the random

phases approximation [16] for ak we have hj~akj2i �
2�=�1� �2�hjakj

2i. Therefore the power spectrum has
scaling !�1

k for both ak and ~ak. (Note that hjakj2i is shown
in Fig. 1.) As a consequence, the effective temperature, ~T,
for the renormalized waves is related to the bare tempera-
ture T by ~T � �2�2=�1� �2��T.
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FIG. 2 (color online). (a) Density plot of spectrum for � � 1
and H�200 [ ln�jak�!�j

2� is plotted]. (b) Renormalized linear
frequency as a function of �: analytical predictions (pluses) and
numerical measurements (circles). �0:2 is shown for compari-
son (dashed line). (c) Effective nonlinearity as a function of �
before (diamonds) and after (crosses) renormalization.
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The renormalization picture is further corroborated by
the time evolution of each individual wave ~ak. For the bare
waves ak, there are large temporal modulations in both
modulus and phase as a result of strong nonlinear interac-
tion among these modes on the linear dispersion time scale
[as shown in Figs. 3(a) and 3(b)]. In weakly nonlinear
systems, wave amplitudes and corresponding phases are
expected to evolve slowly on the linear dispersion time
scale. For renormalized waves [Figs. 3(c) and 3(d)] these
modes indeed have characteristics of weakly interacting
waves, with a small modulation in j~akj2 and phase.

Now we turn to the numerical evidence for the persis-
tence of DBs in the thermalized �-FPU chain. As observed
before [8], there are DBs present in the transient state. As
nonlinearity increases, the duration of transient becomes
shorter. After the energy redistributes among all the modes
to achieve thermal equilibration, our simulations show that
the spatially localized, high frequency excitations still
exist. These DBs can interact with each other and may be
destroyed by collision processes with other DBs or with the
renormalized waves. The spatial structure of these excita-
tions very much resembles the idealized breather oscilla-
tions in the absence of spatially extended waves: they
‘‘live’’ above the high frequency edge of the dispersion
band and their lifetime is sufficiently long (on the order of
10–100 DB oscillations) to behave like a quasiparticle.
Note that, under certain conditions, supersonic solitons
may arise from the �-FPU system as another kind of
localized excitations [17,18]. However, they were not ob-
served in our thermalized system. Figure 4 is the energy
density plot which shows the time evolution of energy of
each particle for the transient (recording starting time T0 �
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FIG. 3 (color online). (a),(b) jakj and phase, respectively, using
the bare linear dispersion !k � 2 sin��k=N�. (c),(d) j~akj and
phase, respectively, using the renormalized dispersion ~!k
[Eq. (3)]. Dashed lines, k � 1; solid lines, k � 20. The disper-
sion time scale is described by Tk � 2�=!k for panels (a) and
(b), and Tk � 2�= ~!k for panels (c) and (d). (Note that, since
ak � jakje

i���!kt�, the phase excludes the linear rotation.)

26430
5� 102) and thermalized (T0 � 5� 105) states, respec-
tively. Figures 4(c) and 4(d) display the energy as a func-
tion of site at T0 corresponding to Figs. 4(a) and 4(b),
respectively. In the transient case [Fig. 4(a)] the spatially
localized objects (dark stripes) that carry sufficiently large
amount of energy are clearly observed. Figure 4(c) is a
snapshot of the energy density plot [Fig. 4(a)] at T0. Here
the DBs are seen as localized peaks [8]. After thermaliza-
tion the spatial structure looks different [Fig. 4(b)]. The
system now consists of the renormalized waves [straight
crosshatch traces in Fig. 4(b)]. On the top of these waves,
the localized structures similar to DBs manifest themselves
as the wavy dark trajectories [in Fig. 4(b)]. Although the
snapshot [Fig. 4(d)] of the energy density plot [Fig. 4(b)]
indicates that in thermal equilibrium the energy is more
evenly distributed among particles, spatially localized
structures are clearly observed.

Since there are renormalized waves in the system, which
also carry energy, we need to find a way to distinguish
between these waves and DBs. We use a frequency filter
that cuts out the lower side of the Fourier spectrum and
leaves the high frequency part unmodified, i.e., f�g�n;t���
ReF�1�H!�F�g���, where Re denotes the real part, F is a
time Fourier transform, H! eliminates all frequencies be-
low !cut, and g�n; t� is a dynamical variable that is being
filtered. By applying this filter to the displacement qn to
obtain qfn � f�qn�, we can show the existence of DBs even
for strong nonlinearities, for example, � � 25. Figure 5(a)
shows a clear example of a DB excitation reconstructed
using the filtered qfn with !cut � 7. Figure 5(b) shows a
typical spatial profile of the DB taken from Fig. 5(a), which
strongly resembles the idealized DB [19]. Finally, in Fig. 6,
we present the evidence that there is a turbulence of DBs,
which chaotically ride on renormalized waves. The corre-
sponding energy density distribution along with the distri-
FIG. 4. Energy density evolution of (a),(c) the transient state
and (b),(d) the thermalized state (� � 1 and H � 200). In (a)
and (b) the darker strips correspond to high energy localizations;
(c) and (d) are the snapshots of energy density.
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FIG. 5 (color online). (a) Evolution of a discrete breather in
thermal equilibrium. (b) Typical snapshot of the breather. � �
25; H � 200.
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bution of filtered displacement in a zoomed region qfn�t� is
displayed in Figs. 6(a) and 6(b), respectively. After the
lower modes from the displacement qn are filtered, one can
clearly observe that the remaining high frequency oscilla-
tions are spatially highly localized, with the same charac-
teristics as an idealized breather. The detailed time
dynamics of the DB shows the main characteristics of
breathers: the values of qfn change signs periodically (as
indicated by the alternating white and black spots along the
trajectory) as the DB moves in space, with a spatial span of
2 or 3 sites only, as seen in Fig. 6(b).

In conclusions, we have presented an interesting dy-
namical scenario of the �-FPU chains in thermal equilib-
rium: (i) For strong nonlinearity the linear dispersion
relation is effectively renormalized, which allows one to
treat even strongly nonlinear systems as if they were
weakly nonlinear. (ii) On top of renormalized waves, the
FIG. 6. Turbulence of discrete breathers (N � 1024): (a) evo-
lution of energy density; (b) zoomed in qfn�t� of the area
indicated by the rectangle in (a).

26430
strongly nonlinear system is also characterized by the
turbulence of discrete breathers.
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