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Controlled Switching of Intrinsic Localized Modes in a One-Dimensional Antiferromagnet
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Nearly-steady-state locked intrinsic localized modes (ILMs) in the quasi-1D antiferromagnet
�C2H5NH3�2CuCl4 are detected via four-wave mixing emission or the uniform mode absorption.
Exploiting the long-time stability of these locked ILMs, repeatable nonlinear switching is observed by
varying the sample temperature, and localized modes with various amplitudes are created by modulation
of the microwave driver power. This steady-state ILM locking technique could be used to produce energy
localization in other atomic lattices.
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Whereas plane waves characterize the natural excita-
tions of a harmonic lattice, intrinsic localized modes
(ILMs) are an important feature associated with large
amplitude excitations in anharmonic lattices [1,2]. In ar-
rays of Josephson junctions [3,4] and in a 2D photonic
crystal lattice [5], ILMs are produced by directly exciting
their macroscopic eigenvectors. A different production
method involving the modulational instability (MI) of the
large amplitude uniform mode [6–8] has been successfully
used to produce ILMs in macroscopic [9,10] and micro-
scopic lattices [11,12]. After the instability generates many
localized modes, a few become stabilized by locking to a
continuous wave (cw) driver frequency. These locked
ILMs may be maintained indefinitely. Emission steps ob-
served by four-wave mixing involving such locked ILMs in
an antiferromagnet are providing a very sensitive method
with which to examine dynamical energy localization in an
atomic lattice [11,12].

Switching is a general characteristic of nonlinear sys-
tems, and, in particular, localized electric and magnetic
(E&M) mode switching is expected to provide an efficient
method for all-optical routing in communications networks
[13]. Dynamical switching is also characteristic of other
kinds of physical systems such as individual driven
Josephson junctions [14], and the discrete resonant breath-
ers in Josephson junction ladders [15], as well as biological
systems [16]. Hysteresis and switching have yet to be
demonstrated with ILMs in an atomic lattice.

In this Letter we demonstrate controlled switching in
locked nearly steady-state ILMs produced in the quasi-1D
antiferromagnet �C2H5NH3�2CuCl4. This is accomplished
by modulating the frequency gap �f between the local
mode and the uniform mode. First, single ILM control is
demonstrated via the temperature dependence of the uni-
form resonance. Second, ILMs with varying amplitudes are
investigated by power modulation of the locking driver.
Precise control of the numbers and amplitudes of ILMs
are prerequisites for studying and manipulating these non-
linear excitations.

The experimental setup and notation we use are based on
those of previous experiments with locked ILMs in the
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quasi-1D antiferromagnet [11,12]. The antiferromagnetic
resonance (AFMR) frequency is sample shape dependent
[17,18] and for c-axis directed rods occurs in the range
1.375–1.385 GHz. In earlier experiments a short, intense
microwave pulse f1 � 1:290 GHz induced the MI and
produced a broad distribution of ILMs. A second micro-
wave source with 1000 times lower power f2 � 1:320 GHz
could then lock a few ILMs with nearby frequencies. These
ILMs were detected by four-wave mixing of f2 with a third
lower power probe f3. P�3�ILM, the resulting power emitted by
the ILMs alone, was detected at the spectrum analyzer
frequency of fsp � 2f2 � f3. According to Eq. 10 in

Ref. [12], P�3�ILM is a function of the integer number of
locked ILMs nILM,
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where ��fsp� is an effective nonlinear susceptibility, and
the powers delivered to the sample by f2 and f3 are P2 and
P3. Because nILM has integer values, this equation de-
scribes steps in the square root of the emitted power. A
limitation of this method of producing locked ILMs is that
emission steps have only been detected as ILMs become
unlocked from the driver.

By eliminating the short pump pulse f1 and placing the
cw driver f2 closer in frequency to the uniform mode we
are able to produce individual locked ILMs over long times
such that their resulting emission steps may be observed as
they form. The effect of this experimental approach is
shown in Fig. 1. Here f2 � 1:330 GHz is switched on at
0 ms. At below critical driver powers, such as those shown
in Fig. 1(a), the AFMR is pulled to slightly lower frequen-
cies due to the soft nonlinearity of the AFMR and the
increased population of finite wave number spin waves.
Despite an increased spin temperature, the resonance re-
tains its narrow width at all times. The AFMR eventually
reaches a nearly steady-state frequency as the energy input
by the driver is balanced by relaxation to the lattice. In
Fig. 1(b) the driver power is sufficient for energy localiza-
tion to occur. At 9 ms, the AFMR is rapidly pulled down;
and shortly afterwards it reforms at nearly the same fre-
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FIG. 2. Step hysteresis in �emission�1=2 vs temperature. (The
abscissa also identifies the linear temperature dependence
of the AFMR frequency in the presence of the f2 driver.)
(a) f2 � 1:350 GHz with three powers: 50 mW, 47.4 mW, and
45.7 mW. Dotted lines: increasing temperatures; solid lines:
decreasing temperatures. The hysteresis due to capture and
loss of a single ILM is evident. (b) Comparison of the 50 mW
data with a model. Thick line: hysteresis characteristic of the
amplitude response for a driven nonlinear oscillator.

FIG. 1. AFMR absorption vs time in the presence of a low
frequency driver. f2 � 1:330 GHz. Darker density repre-
sents stronger absorption. (a) Driver power � 1:1 W and
(b) Driver power � 1:4 W. At about 9 ms a transition occurs
to a broadened resonance. (c) Enhanced view of the broadening
transition at 9 ms in (b). The four-wave mixing �emission�1=2 is
superimposed. The nonlinear emission step occurs in tandem
with the broadening of the AFMR.
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quency, but significantly broadened. The broadening is
accompanied by a step increase in the nonlinear emission.
The detailed AFMR transition from narrow to broad is
expanded in Fig. 1(c). The traces were acquired individu-
ally for each frequency and were not averaged. The differ-
ences from frequency to frequency are indicative of the
uncertainty in the energy localization time. A typical time
dependent trace of the square root of the emitted ILM
power is shown for reference.

The long lifetime of the localized mode produced with
this locking technique allows us to probe the step behavior
by varying the sample temperature. In this way a very
gentle manipulation of the local mode gap �f may be
accomplished since the AFMR frequency varies with tem-
perature. In Fig. 2(a) the measured �emission�1=2 from a
steady-state locked ILM is shown as a function of tem-
perature, and for three different driver powers. The largest
cw power is 50 mW. Sample temperature rates of no more
than a few mK sec�1 are used. As the temperature in-
creases, the AFMR moves towards f2. At 1.247 K, the
emission takes a step up as an ILM becomes locked. At
higher temperatures the emission is nearly constant. On
subsequently decreasing the temperature, the emission is
26410
flat until about 1.237 K where there is a roll-off, an ILM is
then lost, and the emission steps back to its original level.
The step size in �emission�1=2 of 0:4 nW1=2 �0:3 nW1=2�
with increasing (decreasing) temperature is quite similar
with ILM step sizes observed previously [11,12]. There is
an interval of 10 mK between the two ILM switching
temperatures. At lower f2 powers the steps move to higher
temperatures and the hysteresis width decreases slightly.
This is the first observation of reversible switching behav-
ior of an intrinsic localized mode in an atomic crystal.

The shape of the switching hysteresis resembles that
expected from the response of a driven nonlinear oscillator
near its fundamental frequency [19]. Here the amplitude of
the nonlinear oscillator corresponds to the 3rd order non-
linear ac magnetization, which is proportional to the square
root of the emitted power, as shown in Ref. [12] (Eq. 3).
The nonlinear oscillator amplitude is plotted in Fig. 2(b) as
a function of its resonant frequency, which varies as the
measured temperature dependent AFMR. For this nearly
classical 1D spin system the temperature dependence of
the magnetization is given by a Langevin function, and is
approximately linear well below the transition temperature
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[20]. Although the hysteresis matches very well, there are
clear differences; nonetheless, the nonlinear oscillator
model suggests that the ILM hysteresis may be understood
qualitatively within this simple picture.

The second way of controlling the local mode gap �f is
by modulating the power of the locking driver f2. With a
sine wave amplitude modulation, as the power increases,
the AFMR is pulled closer to f2 and ILMs become locked;
then as the power decreases, the gap increases and ILMs
are unlocked. Figure 3 shows an example from this type of
experiment with f2 � 1:330 GHz and a 100 Hz sine wave
modulation with 25% amplitude. The solid traces from
bottom to top represent a subset of the acquired data with
increasing driver powers. The �emission�1=2 has a complex
stepped structure with the same period as the applied field,
and is reproducible over multiple modulation periods.

The complexity shown in Fig. 3 may be reduced by
plotting the power dependence of �emission�1=2 at a few
constant time slices. This is done in Fig. 4. Slices are shown
at 1.25 ms intervals during the second modulation period
from 10–20 ms. The abscissa of each trace corresponds to
the instantaneous applied power at that time. The step
height and switching power depend significantly on the
emission slope at which the slice was made. The dotted
lines in Fig. 4 are representative of times from 10–15 ms,
during which ILMs are becoming locked to the driver.
These increasing emission traces have larger steps and
occur at higher f2 powers. The solid lines are representa-
tive of times from 15–20 ms during which ILMs are
becoming unlocked from the driver. These decreasing
emission traces have smaller steps and occur at lower f2

powers. Modulation dependent hysteresis is apparent, with
FIG. 3. �Emission�1=2 vs time during f2 power modulation.
Solid lines plot the ILM emission as f2 is modulated at
100 Hz and scanned from 112 to 200 mW in 4.7% increments
from bottom to top. The 25% sine wave amplitude modulation
begins at t � 0 ms. The dashed curve illustrates the time pattern
of f2. The emission has a phase shift of �� �=5 relative to the
driver.
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ILMs becoming locked with increasing emission on the
right edge, and then becoming lost with decreasing emis-
sion on the left edge. The width of the hysteresis loop
depends on the rate of change in the emission signal—
the more rapidly the change, the wider it is.

The dashed lines in Fig. 4 suggest that the square root of
the emission step height is proportional to the f2 power.
The lines have slopes of 0:0045 nW1=2 mW�1 per ILM and
x intercepts at 95 mW. The first two steps fit very well,
whereas there is significant variation in the third step. The

linear dependence of
�����������
P�3�ILM

q
on P2 for each individual ILM

is correctly predicted by Eq. (1), and differs from the lack
of power dependence found previously [11,12]. This dif-
ference can be traced to the importance of the local mode
gap �f in determining the ILM amplitude and size. The
earlier experiments did not detect any power dependence
because ILMs with identical amplitude were sequentially
lost from the locking driver. In contrast, the power depen-
dence in Fig. 4 suggests that ILMs with different ampli-
tudes are observed in the different traces. The larger steps
imply narrow ILMs and a larger gap, while the smaller
steps imply wide ILMs with smaller gaps.

A question yet to be addressed is how an ILM actually
forms in this steady-state experiment. Figure 1(c) shows
that the width of the AFMR absorption line remains narrow
as its frequency drops. Somewhat later the ILM forms as
seen by the four-wave emission signal. This is not the
signature of the MI. Instead we propose that at the spatial
location of the largest AFMR spin amplitude, perhaps due
to sample inhomogeneity, the frequency is pulled more
than at the smaller amplitude locations. This increases
the coupling to f2 and drives additional amplitude into
FIG. 4. �Emission�1=2 at constant times as a function of f2

power. The traces extracted from Fig. 3 are separated by 1.25 ms.
Dotted data lines: 10–15 ms (ILM creation); solid data lines:
15–20 ms (ILM loss). The f2 power on the abscissa is calculated
separately for each slice, and includes a phase shift of ��=5 to
that of the applied field. The dashed lines are guides to the eye
that follow the proportionality given in Eq. (1).
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that localized region. When its frequency reaches that of f2

a locked ILM is formed. With the addition of each ILM the
AFMR linewidth increases in an incremental fashion. It is
puzzling that despite the small size of the ILM [11], it has
such a dramatic effect on the width of the AFMR.

We have shown that the switching behavior of steady-
state locked ILMs in the quasi-1D antiferromagnet
�C2H5NH3�2CuCl4 can be controlled by varying the fre-
quency gap between the ILM and the AFMR. The ap-
pearance and disappearance of ILMs can be monitored
both by four-wave mixing emission and AFMR absorption.
Temperature modulation of the local mode gap yielded a
method for switching a locked spin ILM. A steady-state
ILM perturbed by power modulation is found to switch
with a linear dependence of step height on driving power,
demonstrating a controllable variation in its amplitude.

These spin wave experiments suggest an analogous
method for generating ILMs in other systems such as an
anharmonic phonon system. By temperature tuning a para-
electric crystalline film [21] so that its TO mode is close in
frequency to that of a high power THz laser line, the ILM
generation procedure described here, which does not rely
on modulational instability ignition, can be carried out.
Now a degenerate four-wave mixing output [22] from the
same fixed frequency laser could be used to identify atomic
ILMs.
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