
PRL 95, 263202 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
Simple Three-Parameter Model Potential for Diatomic Systems: From Weakly
and Strongly Bound Molecules to Metastable Molecular Ions

Rui-Hua Xie1,2,3 and Jiangbin Gong4

1Institute for Quantum Studies and Departments of Physics and Chemical Engineering, Texas A&M University,
College Station, Texas 77843, USA

2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
3Department of Physics, Hubei University, Wuhan 430062, China

4Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
(Received 26 June 2005; published 22 December 2005)
0031-9007=
Based on a simplest molecular-orbital theory of H�2 , a three-parameter model potential function is
proposed to describe ground-state diatomic systems with closed-shell and/or S-type valence-shell
constituents over a significantly wide range of internuclear distances. More than 200 weakly and strongly
bound diatomics have been studied, including neutral and singly charged diatomics (e.g., H2, Li2, LiH,
Cd2, Na�2 , and RbH�), long-range bound diatomics (e.g., NaAr, CdNe, He2, CaHe, SrHe, and BaHe),
metastable molecular dications (e.g., BeH��, AlH��, Mg��2 , and LiBa��), and molecular trications
(e.g., YHe��� and ScHe���).
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Modeling the interaction potential of diatomic systems
is of fundamental importance to many issues [1–8], includ-
ing atom-atom collisions, molecular spectroscopy, predic-
tion of cluster structures, molecular dynamics simulation,
chemical reactivity, matter-wave interferometry, and trans-
port properties for more complex systems. Also of great
interest are the potential functions for long-lived meta-
stable doubly or multiply charged ions [9] that are relevant
to high-density energy storage materials and to character-
ization and analytical methods for biosystems.

Modern spectroscopy, diffraction, and scattering tech-
niques [1,3] provide a direct experimental approach to
studies of interaction potentials of diatomic systems. In
particular, diatomic potentials can be inferred from the
spectroscopy data by three general approaches [10]:
(i) the Wentzel-Kramers-Brillouin (WKB) Rydberg-Klein-
Rees (RKR) method, (ii) the WKB-based Dunham ap-
proach, and (iii) semiempirical or empirical procedures.
On the theoretical side, a diatomic potential curve may be
predicted directly by ab initio calculations [11] and quan-
tum Monte Carlo simulations [12]. These theoretical meth-
ods can, in principle, be very accurate when sufficient
electronic configurations are included in the calculations,
but can be prohibitively expensive in weakly bound sys-
tems [2] and/or many-electron systems [3].

Numerous attempts to analytically model diatomic po-
tentials have been made [3,5,10,13–16]. The well-known
potential functions include Morse, Born-Mayer, Hulburt-
Hirschfelder, Rosen-Morse, Rydberg, Pöschl-Teller,
Linnett, Frost-Musulin, Varshni III, Lippincott, Lennard-
Jones, and Maitland-Smith potentials [3,10], as well as the
celebrated Tang-Toennies potential [5] and the recently
proposed Morse-based potentials [13]. These potentials
usually aim to describe either strongly or weakly bound,
neutral or singly charged diatomics and often lose their
validity for either small or relatively large internuclear
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distance (denoted R hereafter). Thus, recent effort has
been devoted to the construction of hybrid potentials,
which use different functions for different interaction re-
gions of R [3,10,14–16] and thereby need more than four
potential parameters. Well-known examples of hybrid po-
tentials include the combined Morse–van der Waals [10],
general Buckingham-type exp�n;m� [10], Cvetko [14], and
Bellert-Breckenridge [15] potentials, as well as the most
recently proposed Rydberg-London potential [16]. For
metastable doubly or multiply charged molecules, none
of the above-mentioned potential functions is able to de-
scribe their ground states. To date, only few theoretical
models [17,18] that were specifically designed for meta-
stable molecular dications [9] have been proposed.

The goal of this Letter is twofold. First, we propose a
molecular-orbital theory based approach to obtain a very
simple analytical potential of diatomic systems. The po-
tential function thus obtained has significant applicability
insofar as it can describe a wide variety of diatomic mole-
cules with good accuracy for almost the whole range of R
but excluding the large-R limit. Second, we show that this
potential function can also describe metastable doubly
charged diatomics as well as singly and tripl charged
ones. Specifically, we advocate a very simple three-
parameter ground-state potential function that is applicable
to more than 200 diatomics with closed-shell and/or S-type
valence-shell constituents (atoms or ions whose shells are
closed or whose valence shells are S orbital). These include
neutral and singly charged diatomics, long-range bound
diatomics [19], metastable molecular dications [20], and
molecular trications [21]. The details for these systems and
the associated parameters of our model potential are given
in Ref. [22].

We require a few-parameter potential function to satisfy
the following basic conditions: (i) its asymptotic value E1
for R! 1 is finite. (ii) A global potential minimum Emin
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at the equilibrium distance Re is allowed. (iii) It approaches
infinity as R! 0. (iv) One local potential maximum Emax

at Rmax is allowed to describe metastable systems. (v) Both
Coulomb and exchange interactions can be described by
using only few parameters. To seek such a potential func-
tion we revisit the molecular-orbital theory [23] as applied
to H�2 , the simplest single-electron diatomic system, with
the associated Hamiltonian H � � 1

25
2 � 1

rA
� 1

rB
� 1

R (in
atomic units), where rA and rB denote electron-nucleus
distances. This case can be solved exactly, but here it is
used as a reference system to understand how the simplest
version of the molecular-orbital theory may be improved.
To that end consider the S-type trial function of H�2 : � �
c1j�

A
0 i � c2j�

B
0 i, where j�0i �

e�r���
�
p (the 1s orbital of H

atom). The energy of the bonding orbital is then given by

E�R� � E1 �
J1�R� � K1�R�

1� S0�R�
; (1)

where E1 � �
1
2 , J1�R� � e�2R�1� 1

R�,K1�R� � e�R�1R�
2
3R�, and S0�R� � e�R�1� R� 1

3R
2� [22,23]. In the litera-

ture [5,23], J1 and K1 are called the Coulomb and ex-
change integrals, respectively, and S0 is the overlap inte-
gral between the orbitals j�A

0 i and j�B
0 i. Figure 1(a) shows

the resultant potential curve of H�2 . The minimum energy
Emin is�0:56483 hartree, located at Re�2:500 bohr. This
should be compared with the most accurate data [24]:
Emin � �0:60263 hartree, at Re � 1:999 bohr. Clearly
then, while the analytical potential function of H�2 derived
above satisfies most of the general pair potential require-
ments set above, quantitatively it should be improved.
Indeed, if polarization and even diffuse functions are in-
cluded in the trial function, then the potential curve in the
bonding region has a much better performance. As illus-
trated in Fig. 1(b), by using couple cluster method with
single and double excitation (CCSD) [25] with STO-3G
(1s orbital only), 6–31 G�d; p� (including polarization
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FIG. 1. The potential energy curve of the ground state of H�2 :
(a) Eq. (1) (dot-dashed line) and Eq. (2) (solid line, � �
1:051 110 6, � � 0:917 0342 42, � � 2:25); (b) Eq. (1) (dot-
dashed line), CCD/STO-3G (dotted line), CCSD=6–31 G�d; p�
(dashed line), and CCSD=6–311��G�3df; 3pd� (solid line).
The filled dots in (a) and (b) are the most accurate data reported
Ref. [24]. The inset in (a) is for the short-range region.
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function), and 6–311�� G�3df; 3pd� (including diffuse
functions) Gaussian-type basis sets, one obtains Emin�
�0:58270;�0:59449;�0:602201hartree at Re � 2:0043;
1:9482; 1:9999 bohr, respectively.

We now introduce a simple analytical potential function
to improve the above potential for H�2 . That is,

E�R;�;�; �� � E1 �
J1�R;�� � K1�R;�; ��

1� S0�R�
; (2)

where parameter � is introduced in the Coulomb integral
J1, i.e., J1�R;�� � e�2�R�1� 1

R�, and two parameters �
and � are introduced in the exchange integral K1, i.e.,
K1�R;�;�� � e��R�1R� �R�. Below we briefly discuss
the meanings of the three parameters in the light of the
polarization approximation [5]. A detailed discussion of
this issue is presented in Ref. [22]. In the first-order polar-
ization approximation, Eq. (2) can be rewritten as
E�R;�;�; �� � E�Ep; �ex� � Ep � �1� S0�R���ex, where
Ep � E1 � J1�R;�� and �ex �

1
1�S0�R�2

�S0�R�J1�R;�� �

K1�R;�;��� are the polarization and exchange energies,
respectively. [For one-electron H�2 , the exchange energy
can be interpreted as resulting from the electron hopping
back and forth across the median plane between two pro-
tons [5], therefore referring to the exchange of two pro-
tons.] Clearly, parameter � directly adjusts J1�R;�� and
hence the polarization energy Ep. Because �ex also de-
pends on J1�R;��, the introduction of � also affects the
dispersion (positive) part of �ex. Through the term
K1�R;�;��, parameters � and � are used to account for
the R dependence of �ex that is already affected by �. In
particular, the induction part (the negative term) of �ex is
adjusted only by parameter �, and parameter � further
adjusts the dispersion part of �ex through the negative term
of K1�R;�; ��. Certainly there are alternative approaches
for realizing these adjustments, but the new potential func-
tion constructed above includes both the Pauli repulsive
term e�bR

R and the well-known Born-Mayer ‘‘exponential’’
form Ae�bR. This is different from Tang-Toennis [5],
Cvetko [14], and Rydberg-London [16] potentials, whereas
only the Born-Mayer form appears as their repulsion terms.
It should also be stressed that although E�R;�; �; �� now
has three adjusting parameters, it is still analogous to
Eq. (1) in many aspects (e.g., satisfying all the pair poten-
tial requirements set above). Based on this three-parameter
potential function, we find that the potential curve for H�2 ,
as shown in Fig. 1(a), would agree very well with the most
accurate data available in Ref. [24] if we choose � �
1:051 110 6, � � 0:917 034 242, and � � 2:25. This con-
firms that �;�; � can be properly adjusted such that con-
tributions of both the polarization and exchange energies
can be accounted for in an efficient way, thereby achieving,
in effect, the same goal as that of using larger basis sets in
the trial wave functions.

Certainly our real motivation is to extend this simple and
successful procedure from H�2 to other multielectron dia-
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tomic systems. A number of established results about the
electronic structures of diatomic systems suggest that this
is possible for ground-state diatomics with closed-shell
and/or S-type constituents [22]. In the zeroth-order ap-
proximation, the outermost electrons in a multielectron
system move in the Hartree-Fock self-consistent field or
the effective potential of all the core electrons and the
positive nucleus, and the asymptotic exchange energy of
a multielectron system can arise primarily from the outer-
most electrons. The exchange interactions between two
multielectron atoms, which play a crucial role in chemical
bonding, are dominated by the exchange of a single pair of
electrons, and the associated exchange energy is given by
that of a single-electron pair multiplied by a constant.
Based on the polarization approximation [5], the ground-
state potentials E�Ep; �ex� of H2 and other multielectron
diatomic systems, when expressed in terms of the polar-
ization and exchange energies, can take a similar form [22]
to that of H�2 , despite that their origins of the exchange
energy are totally different. Motivated by these known
theoretical results, we have carried out extensive studies
of more than 200 diatomic systems for which experimental
or ab initio data are available. We find that, indeed, the
above three-parameter potential can be proposed as a
widely applicable potential function for ground-state dia-
tomics with closed-shell and/or S-type constituents.

To determine the three parameters of the proposed po-
tential function we suggest several numerical approaches
in the Appendix C of our supplementary material [22]. The
model potential curves thus determined for more than 200
weakly and strongly bound diatomic systems agree with
the available experimental or theoretical data, with the
agreement in many cases much better than one could
naively anticipate from a three-parameter potential [see
Table 1 and Fig. A in Ref. [22] ]. Below we discuss some
sample results. In particular, Fig. 2 shows that the potential
curve for H2 is in good agreement with the recent 14-
parameter model potential [26] and the most accurate
-2

 0

 4

 8

 0.1  0.3  0.5
-1.18

-1.12

-1.06

-1

 0.5  2.5  4.5  6.5

-1.06

-1.03

-1

 3  4  5

E
 (

ha
rt

re
e)

R (bohr)

FIG. 2. The comparison between the new potential (dot-dashed
line, � � 1:506 575 6, � � 2:484 756 52, � � 1:45), 14-pa-
rameter-fit model potential [solid line, Ref. [26] ], hybrid
Rydberg-London potential [dashed line, Ref. [16]) ], Morse
potential (dotted line), and the most accurate ab initio data [filled
circles, Ref. [11] ] for hydrogen molecule H2. Inset in the right-
most figure is the enlarged part between 3.0 and 5.0 bohr.

26320
data [11], thereby giving a better performance than the
Morse function [3] and the most recent hybrid Rydberg-
London potential [16]. Even more significantly, our poten-
tial function is applicable to metastable S-type molecular
dications [20] (e.g., He��2 , Be��2 , BeH��, Mg��2 ,
MgH��, BH��, AlH��, LiBa��, KBa��, NaBa��, and
Ba��2 ), and molecular trications [21] (e.g., YHe���,
ScHe���) as well as neutral and singly charged diatomic
systems. The potential curves for BeH�� and AlH�� using
our potential function are shown in Fig. 3, where the po-
tential barriers agree well with Ref. [20]. Figure 4 displays
the calculated rotationless vibrational levels for 7LiH, H2,
CdNe, and Na40Ar [see Ref. [22] for results of isotopes],
reaching good accuracy as compared with experiments
[27–30]. Quite unexpectedly, even for very weakly long-
range bound diatomics [2] such as 4He2, 40Ca4He, 86Sr4He,
and 137Ba4He, we are able to find a set of potential pa-
rameters that predict a single vibrational level at �0:107,
�67:099, �59:875, and �48:560 � eV [22], consistent
with the recent literature data, �0:0999, �67:161,
�59:573, and �48:279 �eV, respectively [1,31].

For the metastable dications He��2 , Be��2 , BeH��, and
Mg��2 , we found that they can support 5, 18, 8, and 20
vibrational levels that again agree with Refs. [20,32].
Furthermore, with the new potential function we predict
that the metastable dication AlH�� can support 12 vibra-
tional levels. The estimated lifetimes for the lowest four
vibrational states of BeH�� are � � 4:9� 1010, 3:3�
107, 4:8� 104, and 130 �s, and those for the lowest six
vibrational states of AlH�� are � � 2:8� 1016, 1:8�
1013, 2:0� 1010, 3:3� 107, 8:3� 104, and 288 �s [see
Table 8 in Ref. [22] ]. Note that BeH�� and AlH�� have
been recently observed to survive flight times of about 4
and 7 �s, respectively [33], thus supporting our
calculations.

Before concluding we make one final remark. In the
large-R limit where the atomic electron clouds do not
overlap considerably, the interaction energy of an atomic
pair is given by the well-known multipolar dispersion
expansion

P
1
n�3 C2n=R2n [3,5,34]. In this limit our model

potential approaches E1 exponentially, a feature different
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FIG. 3. The potential energy curve of the ground state of
BeH�� (� � 0:687, � � 1:436 320 04, and � � 0:1185) and
AlH�� (� � 0:585 984, � � 0:796 691 521, and � � 0:0365).
The filled/open circles denote the previous data from Ref. [20].
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from that suggested by the multipolar dispersion expan-
sion. Nevertheless, because the proposed potential is ap-
plicable for internuclear distances far beyond the equili-
brium position (e.g., see Figs. 1 and 2), its asymptotic
exponential behavior should not present an issue except
for some extreme cases such as ultracold collisions.

In conclusion, we have proposed an analytical three-
parameter potential function for more than 200 weakly
and strongly bound ground-state diatomics, including
metastable molecular dications, with good accuracy over
a significantly wide range of internuclear distances.
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