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We propose a five-dimensional framework for modeling low-energy properties of QCD. In the simplest
three parameter model we compute masses, decay rates and couplings of the lightest mesons. The model
fits experimental data to within 10%. The framework is a holographic version of the QCD sum rules,
motivated by the anti-de Sitter/conformal field theory correspondence. The model naturally incorporates
properties of QCD dictated by chiral symmetry, which we demonstrate by deriving the Gell-Mann–
Oakes–Renner relationship for the pion mass.
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TABLE I. Operators/fields of the model.

4D: O�x� 5D: ��x; z� p � �m5�
2

�qL�
�taqL AaL� 1 3 0

�qR�
�taqR AaR� 1 3 0

�q�Rq
�
L �2=z�X�� 0 3 �3
Introduction.—QCD has eluded an analytic solution, de-
spite extensive efforts applied to this problem in the past
30 years. Recently, the gravity/gauge, or anti-de Sitter/
conformal field theory (AdS/CFT) correspondence [1]
has revived the hope that QCD can be reformulated as a
solvable string theory. So far, theories which can be solved
using AdS/CFT techniques differ substantially from QCD,
most notably by the strong coupling in the ultraviolet (UV)
regime and the lack of asymptotic freedom. Nevertheless,
certain important properties of QCD, such as confinement
and chiral symmetry breaking, are present in many of these
theories, and the gravity/gauge duality provides a new
approach to studying the resulting dynamics. An important
development in the prototypical example of N � 4 super
Yang-Mills (SYM) theory has been the introduction of
fundamental quarks using probe D7 branes [2]. The me-
sons that appear in these theories behave in many ways
similarly to the mesons in QCD [3,4].

Inspired by the gravity/gauge duality we propose the
following complementary approach. Rather than deform
the SYM theory to obtain QCD [5], we start from QCD and
attempt to construct its five-dimensional (5D) holographic
dual. In this Letter, we present an exploratory study of a
simple holographic model of QCD. The field content of the
5D theory is chosen to reproduce holographically the
dynamics of chiral symmetry breaking in QCD, the bound-
ary theory. The model has four free parameters, one of
which is fixed by the number of colors; the remaining three
parameters can be fitted using three well-measured observ-
ables, e.g., the � meson mass, the pion mass, and the pion
decay constant. The model then predicts other low-energy
hadronic observables with surprisingly good accuracy.

Such an approach is similar in spirit to the construction
of the QCD moose theory in Ref. [6], where the holo-
graphic description arises in the continuum limit of infi-
nitely many hidden local symmetries (see also Ref. [7]). As
in Ref. [6], vector meson dominance and QCD sum rules
are natural consequences of our model. Hence, the success
of the model is not coincidental, but a result of linking
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several proven approaches through the AdS/CFT corre-
spondence. We expect the success of our model to diminish
above roughly the scale given by the mass of the lightest
isospin-carrying spin-2 resonance, namely, the a2

(1318 MeV [8]). In particular, we are completely neglect-
ing stringy physics which becomes important at higher
energies, and we have not included in our description any
modes with spin larger than 1. At this stage, we also
neglect running of the QCD coupling, which is likely a
poor approximation for a larger range of energies. While
our model is too simple to provide a complete dual de-
scription of QCD, its success seems to suggest that there is
a quantitatively useful reformulation of QCD as a string
theory in a higher-dimensional curved space.

Field content.—Table I illustrates the field content of our
model. The choice of the 5D fields is dictated by a principle
of the AdS/CFT correspondence: each operator O�x� in the
4D field theory corresponds to a field��x; z� in the 5D bulk
theory. The 5D theory dual to QCD should, therefore,
contain an infinite number of fields corresponding to the
infinite number of operators in QCD. There is, however, a
small number of operators that are important in the chiral
dynamics: the left- and right-handed currents correspond-
ing to the SU�Nf�L � SU�Nf�R chiral flavor symmetry, and
the chiral order parameter (see Table I). We shall include in
our model only the 5D fields which correspond to these
operators and neglect all other fields.

The 5D masses m5 of the fields AaL�, AaR�, and X are
determined via the relation [9,10] ��� p���� p� 4� �
m2

5, where � is the dimension of the corresponding p-form
operator—see Table I. We have assumed here that these
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operators keep their canonical dimensions, which is true
only for the conserved currents. However, for the field X
we could easily incorporate corrections to its classical
dimension. The factor 1=z in Table I is dictated by the
dimension of the operator �qq, while the factor of 2 is of no
physical significance and is chosen for later convenience.

We shall choose the simplest possible metric for our
model, namely, a slice of the anti-de Sitter (AdS) metric,

ds2 �
1

z2 ��dz
2 � dx�dx��; 0< z � zm: (1)

The fifth coordinate z corresponds to the energy scale, as
higher energy (or momentum transfer Q2) QCD physics is
reflected by the behavior of the fields closer to the AdS
boundary z � 0: Q� 1=z. By virtue of the conformal
isometry of the AdS space, in such a model the running
of the QCD gauge coupling is neglected in a window of
scales until an infrared (IR) scale Qm � 1=zm. To make the
theory confining, one introduces an IR cutoff in the metric
at z � zm where spacetime ends, in analogy with the case
of the cascading gauge theory studied in Ref. [11]. We shall
call z � zm the ‘‘infrared brane’’ and impose certain
boundary conditions on the fields at z � zm. Certainly,
this is only a crude model of confinement. Indeed, our
model requires two dimensionful parameters related to
chiral symmetry breaking, whereas in QCD there is only
one. In addition, an UV cutoff can be provided by setting
the boundary to z � � instead of z � 0. Below we shall
frequently use such a cutoff as a mathematical tool, but we
shall always imply the limit of �! 0 for simplicity.

5D action and chiral symmetry breaking.—The action of
the theory in the bulk is

S �
Z
d5x

���
g
p

Tr
�
jDXj2 � 3jXj2 �

1

4g2
5

�F2
L � F

2
R�

�
(2)

where D�X � @�X� iAL�X� iXAR�, AL;R � AaL;Rt
a,

and F���@�A��@�A�� i	A�;A�
. As usual, the gauge
invariance in the 5D theory corresponds to the conservation
of the global symmetry current in the 4D theory.

At the IR brane we must impose some gauge invariant
boundary conditions, and we make the simplest choice:
�FL�z� � �FR�z� � 0. QCD does not a priori fix this
boundary condition: for example, there may be additional
terms in the Lagrangian localized at zm, such as jDXj2 and
F2
L � F

2
R. To estimate the sensitivity to such terms, we

checked that an F2 boundary term with O�1� coefficient
(keeping the �mass fixed) yields a 10% correction to the �
decay constant. We will be using the gauge Az � 0 and
neglecting boundary terms in the Lagrangian. In this case
our boundary conditions are simply Neumann.

The expectation value of the field X is determined by the
classical solution satisfying the UV boundary condition
�2=��X��� � M for quark mass matrix M:

X0�z� �
1

2
Mz�

1

2
�z3: (3)
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The matrix � is determined by the IR boundary condition
on X. Instead of specifying this condition we shall choose
� as an input parameter of the model. The meaning of � in
QCD can be found by calculating the variation of the
vacuum energy with respect to M [12]: ��� � h �q�q�i.
We shall assume, as usual, � � 	1 and take M � mq1.

At this stage the model has four free parameters: mq, 	,
zm, and g5. The gauge coupling g5 will be fixed by the
QCD operator product expansion (OPE) for the product of
currents, leaving three adjustable parameters.

We will focus on the Nf � 2 lightest flavors and neglect
effects ofO�m2

q�. Therefore, in Table I, �;� � 1; 2; a; b �
1; 2; 3 and ta � 	a=2, where 	a are the Pauli matrices.

Matching the 5D gauge coupling.—We will use the
holographic duality to relate of the 5D coupling g5 in (2)
to the number of colors Nc in QCD. The precise sense of
the holographic correspondence is the equivalence be-
tween the generating functional of the connected correla-
tors in the 4D theory W4D	�0�x�
 and the effective action
of the 5D theory S5D;eff	��x; ��
, with UV boundary values
of the 5D bulk fields set to the value of the sources in 4D
theory:

W4D	�0�x�
 � S5D;eff	��x; ��
 at ��x; �� � �0�x�: (4)

QCD Green’s functions can therefore be obtained by dif-
ferentiating the 5D effective action with respect to the
sources. In the case that stringy effects can be neglected,
S5D;eff is simply given by Eq. (2). The action is evaluated
on solutions to the 5D equations of motion subject to the
condition that the value of each bulk field at the boundary
z � �! 0 be given by the source � of the corresponding
4D operator O (see Table I).

We may now fix the 5D gauge coupling by comparing
the result for the vector current two-point function obtained
from the above prescription with that of QCD. Introducing
the vector field as V � �AL � AR�=2, one finds, in the
Vz�x; z� � 0 gauge, the equation of motion for the trans-
verse part of the gauge field:

�
@z

�
1

z
@zVa��q; z�

�
�
q2

z
Va��q; z�

�
?
� 0: (5)

Here Va��q; z� is the 4D Fourier transform of Va��x; z�. The
equations of motion are linearized, as is appropriate for
determination of two-point functions. Evaluating the ac-
tion on the solution leaves only the boundary term

S � �
1

2g2
5

Z
d4x

�
1

z
Va�@zV�a

�
z��
: (6)

If V�a0 �q� is the Fourier transform of the source of the
vector current Ja� � �q��t

aq at the boundary then letting
V��q; z� � V�q; z�V�0 �q�, we require that V�q; �� � 1.
Differentiating twice with respect to the source V0, we
arrive at the vector current two-point function,
2-2
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Z
x
eiqxhJa��x�J

b
��0�i � 
ab�q�q� � q

2g����V�Q
2�; (7a)

�V��q2� � �
1

g2
5Q

2

@zV�q; z�
z

��������z��
; (7b)

where Q2 � �q2. For large Euclidean Q2 we only need to
know V�q; z� near the boundary,

V�Q; z� � 1�
Q2z2

4
ln�Q2z2� � . . . (8)

which up to contact terms gives

�V�Q2� � �
1

2g2
5

lnQ2: (9)

On the other hand, we can compute �V from QCD by
evaluating Feynman diagrams [13]. The leading-order dia-
gram is the quark bubble,

�V�Q2� � �
Nc

24�2 lnQ2: (10)

This leads to the identification

g2
5 �

12�2

Nc
; (11)

which completes the definition of the action (2).
Hadrons.—The hadrons of QCD correspond to the nor-

malizable modes of the 5D fields. These normalizable
modes satisfy the linearized equation of motion and decay
sufficiently rapidly near the boundary z! 0 so as to have a
finite action. The IR boundary condition gives rise to a
discrete tower of normalizable modes. The eigenvalue of a
normalizable mode is the squared mass of the correspond-
ing meson, and the derivative of the mode near the UV
boundary yields the decay constant.

To illustrate the above, consider the tower of the �
mesons. A � wave function,  ��z�, is a solution to
Eq. (5) for an arbitrary component of V� with q2 � m2

�,
subject to  ���� � 0, @z ��zm� � 0 and normalized asR
�dz=z� ��z�

2 � 1. Consider the Green’s function corre-
sponding to Eq. (5) for an arbitrary component of V�:

G�q; z; z0� �
X
�

 ��z� ��z0�

q2 �m2
� � i"

: (12)

(The i" prescription, among other things, guarantees the
positivity of the spectral function, contrary to the claim of
Ref. [14].) One can show that V�q; z0� of Eq. (7b) is given
by ��1=z�@zG�q; z; z0� at z � �. Now from (7b) we find

�V��q2� � �
1

g2
5

X
�

	 0����=�

2

�q2 �m2
� � i"�m

2
�
: (13)

This allows us to extract the decay constants F�:

F2
� �

1

g2
5

	 0����=�

2 �

1

g2
5

	 00��0�

2; (14)
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where F� is defined by h0jJa�j�bi � F�

ab"� for a �

meson with polarization "�. Equations (9) and (13) are
the holographic version of the QCD sum rules.

In the axial sector (a1 and � mesons), the action to
quadratic order is

S �
Z
d5x

�
�

1

4g2
5z
FaAF

a
A �

v�z�2

2z3 �@�
a � Aa�2

�
; (15)

where we have defined v�z� � mqz� 	z
3, A �

�AL � AR�=2, and X � X0 exp�i2�ata�. In the Az � 0
gauge, the resulting equations of motion in 4D momentum
space are (A� � A�? � @�’)

�
@z

�
1

z
@zAa�

�
�
q2

z
Aa� �

g2
5v

2

z3 Aa�

�
?
� 0; (16)

@z

�
1

z
@z’a

�
�
g2

5v
2

z3 ��
a � ’a� � 0; (17)

�q2@z’a �
g2

5v
2

z2 @z�a � 0: (18)

The a1, being a spin-1 particle, is the solution to Eq. (16)
with  a1

�0� � @z a1
�zm� � 0. The a1 decay constant, Fa1

,
is given by an expression similar to Eq. (14), but with �
replaced by a1.

Our theory has all the consequences of chiral symmetry
built in. Let us derive the Gell-Mann–Oakes–Renner
(GOR) relation,

m2
�f2

� � �mu �md�h �qqi � 2mq	: (19)

Since h0jA�j�i � if�q�, the axial current correlator in the
m� � 0 limit has a singularity at q2 � 0: �A��q

2� !
�f2

�=q
2. Using the holographic recipe [cf. Eq. (7)],

f2
� � �

1

g2
5

@zA�0; z�
z

��������z��
; (20)

where A�0; z� is the solution to Eq. (16) with q2 � 0,
satisfying A0�0; zm� � 0, A�0; �� � 1. The pion is the solu-
tion to Eqs. (17) and (18), subject to ’0�zm� � ’��� �
���� � 0. We may construct such a solution perturbatively
in m� by letting ’�z� � A�0; z� � 1. Then, from Eq. (18),
to leading order in m2

�,

��z� � m2
�

Z z

0
du

u3

v�u�2
1

g2
5u
@uA�0; u�: (21)

The function u3=v�u�2 has a significant support only for

u� zc �
�������������
mq=	

q
. The function @uA�0; u�=�g2

5u� for such

small values of u can be replaced by its value at u � �,
which is related to f� via (20). Performing the integral one
finds that ���m2

�f
2
�=�2mq	� for z� zc. Equations (16)

and (17) are solved by ’ � A�0; z� � 1 and � � const for
z� zc only if � � �1, hence m2

�f2
� � 2mq	�O�m2

q�.
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TABLE II. Results of the model for QCD observables.
Model A is a fit of the three model parameters to m�, f�, and
m� (see asterisks). Model B is a fit to all seven observables.

Observable
Measured

(MeV)
Model A

(MeV)
Model B

(MeV)

m� 139:6 0:0004 [8] 139:6� 141
m� 775:8 0:5 [8] 775:8� 832
ma1

1230 40 [8] 1363 1220
f� 92:4 0:35 [8] 92:4� 84.0
F1=2
� 345 8 [15] 329 353
F1=2
a1

433 13 [6] 486 440
g��� 6:03 0:07 [8] 4.48 5.29
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Meson interactions and g���.—The meson interactions
can be read from the nonbilinear terms in the 5D action.
For example, we find that the �-� coupling is given by

g��� � g5

Z
dz ��z�

�
�0�z�2

g2
5z
�
v�z�2�����2

z3

�
: (22)

The normalization of � is fixed by the pion kinetic term:
integrating the function in parentheses in Eq. (22) gives 1.
One must be aware that this 3-meson amplitude could be
sensitive to the F3 terms not yet included in our model.

Predictions.—From Eq. (5) and the Dirichlet boundary
conditions, the � wave functions are Bessel functions with
masses determined by zeroes of J0�qzm�. Hence, m� �

2:405=zm � 776 MeV fixes zm � 1=�323 MeV�. mq and
	 can then be fit to the experimental values of m� and f�,
yielding mq � 2:29 MeV and 	 � �327 MeV�3. These
parameters correspond to Model A in Table II.

The rms error, "rms � �
P
O�
O=O�

2=n�1=2 (where

O=O is the fractional error of an observable O and n �
4 equals the number of observables minus the number of
parameters) for Model A is 15%.

A global fit to all seven observables (Model B) yields the
parameters, zm � 1=�346 MeV�, mq � 2:3 MeV and 	 �
�308 MeV�3. The last column of Table II lists the calcu-
lated observables in this model. The rms error of Model B
is a remarkably small 9%.

Discussion and outlook.—The holographic model of
QCD studied here is quite crude and depends on only three
free parameters, but it agrees surprisingly well with the
seven experimentally measured observables which we
have studied. There are several ways in which we may
attempt to extend and improve the model. (i) The glueball
spectrum can be calculated from the gravitational and
dilaton modes in the theory, which were not included in
this study. (ii) It is straightforward to describe power
corrections in the current correlators [16]. Here we
matched the gauge coupling g5 in our model to the leading
term—the unit operator—in the OPE of the product of
currents. Higher dimension operators also appear in the
OPE, suppressed by powers of the Euclidean momentum
Q. These corrections can be calculated in QCD [13]. In the
holographic model, these corrections arise from trilinear
and higher terms in the 5D action, such as

R
d5x

���
g
p
X2F2.

Matching the QCD OPE coefficients to the coefficients of
the 5D action provides a method of building and constrain-
ing the effective 5D action. (iii) Including the strange quark
into the model with an approximate SU�3� � SU�3� chiral
symmetry is a natural extension of the model. (iv) The
chiral anomaly can be incorporated via a 5D Chern-Simons
term. (v) We can include corrections to the dimensions of
the chiral order parameters by varying the mass of the cor-
responding fields X in the 5D theory, and we can include
running of the gauge coupling via logarithmic corrections
to the AdS geometry. It is interesting to note in this context
26160
that those results which follow from partial conservation of
the axial current, e.g., the GOR relation, continue to hold as
we vary the 5D mass of X in the model [16].
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