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In this work we show that the gravity Lagrangian f(R) at relatively low curvatures in both metric and
Palatini formalisms is a bounded function that can only depart from the linearity within the limits defined
by well-known functions. We obtain those functions by analyzing a set of inequalities that any f(R) theory
must satisfy in order to be compatible with laboratory and solar system observational constraints. This
result implies that the recently suggested f(R) gravity theories with nonlinear terms that dominate at low
curvatures are incompatible with observations and, therefore, cannot represent a valid mechanism to

justify the cosmic speedup.
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Observations carried out in the last few years indicate
that the Universe is undergoing a period of accelerated
expansion [1]. In the context of this cosmic speedup,
modified theories of gravity in which the gravity
Lagrangian is a nonlinear function of the scalar curvature

g— 1

2k?
have become the object of recent interest. These theories
are commonly referred to as f(R) gravities. Motivated by
the fact that the addition of positive powers of the scalar
curvature to the Hilbert-Einstein Lagrangian may give rise
to early-time inflationary periods, modifications of the
Lagrangian that become dominant at low curvatures have
been suggested to justify the observed late-time cosmic
acceleration [2] (see also [3]). The aim of these theories is
to describe the cosmic acceleration as an effect of the
gravitational dynamics itself rather than as due to the
existence of sources of dark energy. In addition to the
standard formulation of f(R) gravities, where the metric
is the only gravitational field, it was pointed out in [4] that
once nonlinear terms are introduced in the Lagrangian, an
alternative and inequivalent formulation of these theories is
possible. If one considers metric and connection as inde-
pendent fields, i.e., that the connection in the gravity
Lagrangian is not the usual Levi-Civita connection but is
to be determined by the equations of motion, then the
resulting theory is different from that defined in terms of
the metric only. This new approach, known as Palatini
formalism, and the metric one have been shown to lead
to late-time cosmic acceleration for many different f(R)
Lagrangians. However, the attempts made so far to unravel
the form of the function f(R) from the cosmological data
are far from being conclusive [5].

In this work we study the constraints on f(R) gravities
imposed by laboratory and solar system experiments. We
find that the Lagrangian must be linear in R and that the
possible nonlinear corrections are bounded by R?. This
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implies that the cosmic speedup cannot be due to unex-
pected gravitational effects at low cosmic curvatures.

In order to confront the predictions of a given gravity
theory with experiment in the solar system, it is necessary
to obtain its weak field, slow motion (or post-Newtonian)
limit. We will now derive a scalar-tensor representation for
f(R) gravities that will allow us to treat the metric and
Palatini formulations in a very similar manner and will
simplify the computations of the post-Newtonian metric.
The following action (see [6,7]) leads to the same equa-
tions of motion as Eq. (1):

S = i [ d*x\/=glf(A) + (R — A)B]+S,, (2

where A is an auxiliary field and B = df(A)/dA. To fix our
notation, we will denote R(g) as the contraction R(g) =
g""R,, with the Ricci tensor R, given in terms of the
Levi-Civita connection of g,,,, and R(I') as the contraction
R(I') = g"”R,,, with R,,, given in terms of a connection I
independent of g,,. Thus, the symbol R in Eq. (2) must be
seen as R = R(g) in the metric formalism, and as R =
R(I') in the Palatini formalism. By inverting the function
B = B(A) to get A = A(B) and defining

V(B) = AB — f(A), (3)
then Eq. (2) in the metric formalism can be identified with
the case w = 0 of the Brans-Dicke-like theories,

1
S5 [ 45072 0R@ - 500,000 ) - V(@) ] +5,,

“)
where ¢ = B. We thus see that B is the relevant field
instead of A = A(B). Analogously, one can find a scalar-
tensor representation for the Palatini formulation. In this
case, the equations of motion for the connection lead to

al

t
F%,y = T(Bﬁt/\y + 8yt)tﬁ - (:)/\tﬁy), (5)

where the tensor 7, is defined as 7, = Bg,,. This solu-
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tion for the connection allows us to write R(I") in terms of
the metric and the field B as follows:

3 3
= + Ap

Inserting this solution in Eq. (2) and discarding a total
divergence we get

! 3
S= f d4x\/'—_g[BR(g) 450, B0MB V(B)} s,
@)

which represents the case w = —3/2 of the theories de-
fined in Eq. (4). [This result can also be obtained from
Eq. (24) of [7] by means of a conformal transformation
back to the original f(R) frame.] It is worth noting that
when V(B) is given, the inverse problem of finding the
Lagrangian f(R) is also possible. From Eq. (3) we see that

dv(B) _ A. (8)
dB
Using this algebraic equation to solve for B = B(A), the
Lagrangian can be written, using again Eq. (3), as

f(A) = AB — V(B). ()]

This means that, with regard to the equations of motion,
f(R) gravities in metric and Palatini formalisms are
equivalent to w =0 and @ = —3/2 Brans-Dicke-like
theories, respectively.

The identification of f(R) gravities with particular cases
of Brans-Dicke-like theories should, in principle, allow us
to express their post-Newtonian limit in a compact form
dependent on the parameter w. However, this is only
partially true. A glance at the equation of motion for the
scalar field defined in Eq. (4),

[3+2w]d¢ +2V(e) — ¢pV'(¢) = «°T, (10)

where T = g#"T,,, indicates that the field is a dynamical
object for all w except w = —3/2. Thus, there exists a
clear dynamical difference between a generic w =
constant theory and the case w = —3/2, which corre-
sponds to the Palatini form of f(R) gravities. As a scalar-
tensor theory, the case w = —3/2 seems to have been
almost avoided in the literature. In the original Brans-
Dicke theory, where the potential term was not present,
this case was obviously pathological (see [8] for a discus-
sion of the limit w — —3/2). Moreover, it was found that
in order to get agreement between predictions and solar
system experiments w should be large and positive, and
little attention was paid later, when nontrivial potentials
were considered, to small or negative values of w. On the
other hand, for w # —3/2 theories with V # 0 it is well
known that if the field has associated a large effective mass,
the predictions of the theory may agree with solar system
experiments irrespective of the value of o [9]. However,
such a result assumes that the field is near an extremum of
its potential. For @ = 0 [f(R) in metric formalism] that
condition, dV /d¢ = 0, cannot be imposed in general. This

follows from Eq. (8) and the A equation of motion, which
leadto dV/d¢ = R(g). Since the leading order of R(g) ata
given time coincides with the background cosmic curva-
ture Ry, # 0, we cannot impose dV/d¢ =0 for v =0
theories. We are thus forced to compute the post-
Newtonian limit of this case without making any a priori
assumption or simplification about the behavior of the
potential. In the case w = —3/2 the relation between ¢
and V(¢) [see Eq. (10)] is even stronger and also forces us
not to make any assumption about V(¢).

We shall now sketch the basic steps to compute the post-
Newtonian metric of Brans-Dicke-like theories, which will
be detailed elsewhere. We generalize the results of the
literature so as to include all the terms that are relevant
for our discussion. For approximately static solutions,
corresponding to masses such as the Sun or Earth, to lowest
order, we can drop the terms involving time derivatives
from the equations of motion. In a coordinate system in
free fall with respect to the surrounding cosmological
model, the metric can be expanded about its Minkow-
skian value as g, = 7,, T hy,.

For w # —3/2, the field is dynamical and can be ex-
panded as ¢ = ¢ + o(t, x), where ¢y = ¢(ty) is the
asymptotic cosmic value, which is a slowly varying func-
tion of the cosmic time f,, and ¢(¢, x) represents the local

deviation from ¢. To lowest order (T = —p), the metric
satisfies the following equations:
1 @ K2p Vo
—_v{h —-}:———, (11)
271 ol 240 24

12 (4 sz VO
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where the gauge condition /', — 3k, = 9,0® /e has
been used. In eliminating the zeroth-order terms in the field
equation for ¢, corresponding to the cosmological solution
for ¢, we obtain

[V2 = m2Je(t 1) = — L (13)
—m - —
pl® LY 3+ 20
where m%a is a slowly varying function of the cosmic time
2 = ¢oVo — Vo
=——— 14
¢ 342w (14)
Solving Eqgs. (11)—(13), the metric becomes
My V,
hoy = 2G— + —~ 12, 15
00 r 6k r (15)
My Vy
hi; =68, 2yG—— —-r*|, 16
ij l,[v p 6¢0r} (16)

where My, = f d*x'p(t, x), and we have defined the effec-
tive Newton’s constant and the parametrized post-
Newtonian parameter y as
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K F(r)
G= 87, <1 37 2w>’ 17
3+ 2w — F(r)

Y 3+ 2w+ F(r) (18)
The function F(r) is given by F(r) = e ™" when
m? >0, and by F(r) = cos|m,|r when m% <0.

Let us now obtain the metric for @ = —3/2 theories. In
this case, no boundary conditions are needed for the scalar
field, since it satisfies an algebraic equation. Denoting by
¢ = ¢(T) the solution to Eq. (10) when w = —3/2, we
construct the quantity Q(7T) = log[ ¢/ d], where the sub-
index now denotes vacuum value, ¢, = ¢(T = 0). Using
the gauge condition /j, — 3 hl ; = 8, Q(T), the equations
for the metric can be written as

oo, _k*p—V(9)
1 K2p + V(o)
3 VL + 8,01 = [%}3,,. (20)
The solution to these equations are
M
hoo(t, x) = 2G—2 + Yo oy (T), 2D
r 6¢0
M Vo
hii(t, x) = |:27GTO - ?%”2 - Q(T):|5ijy (22)
where Mo = ¢ [ d*x'p(1, x')/ p, and we have defined
K2 MV
= 1+—), 23
877'4’0( Mo) @3
Mo — My
=, (24
YT My + M,

with My = k2 [dX'[Vo/do — V(9)/$].

The term (V,/ ¢,)r* appearing in Egs. (15) and (16) for
® # —3/2and in (21) and (22) for o = —3/2 is related to
the scalar energy density and acts in a manner similar to the
effects of a cosmological constant. Thus, any viable theory
must give a negligible contribution of this type. Let us now
focus on @ = 0 theories. The oscillating solutions F(r) =
cos|m,|r are always unphysical. If |m,|L < 1 with L
large compared to solar system scales (long-range interac-
tion), we find y = 1/2, which is ruled out by observations
(Vobs = 13 see [10]). If [m ,|L > 1 (short range), Newton’s
constant strongly oscillates in space and the Newtonian
limit is dramatically modified. Thus, only the damped case
F(r) = e Imel with

miL* > 1 (25)

is physically acceptable. This condition means that the

scalar interaction range [, = m,' must be shorter than

any currently accessible experimental length L.

In the case @ = —3/2, we can learn about the depen-
dence of ¢ on T by studying the behavior of My, G, and .
According to the definition of My, and My [see defini-
tions following Egs. (22) and (24)], it follows that a body
with Newtonian mass My = [ d°x'p(t, x') may yield dif-
ferent values of My, G, and y depending on its internal
structure and composition. Consequently, a given amount
of Newtonian mass could lead to gravitational fields of
different strengths and dynamical properties. We thus de-
mand a very weak dependence of ¢ on T so as to guarantee
that My, G, and 7y are almost constant. This is consistent
with the requirement that the local term Q(7) in Egs. (21)
and (22) must be small compared to unity. Since the
contribution of (T) to the acceleration of a body is given
in terms of its gradient, we must demand that

T(3/dT)
¢

from 7 = 0 up to nuclear densities. Otherwise, a change in
¢ when going from its vacuum value ¢ outside atoms to
its value inside atoms would lead to observable effects in
the motion of macroscopic test bodies placed in the gravi-
tational field defined by Egs. (21) and (22). Since such
effects have not been observed, it follows that over a wide
range of densities ¢ = ¢y + (0¢p/0T)|;—¢T, with
l¢o ' (0p/0T)|7=oT| < 1, must be a very good approxi-
mation. The weak dependence on 7T expressed by Eq. (26)
can be written using Eq. (10) to evaluate (d¢p/9T) as

(«*p/$)
@V = V)
We can thus interpret this equation in a manner analogous
to Eq. (25), as the ratio of a length associated with the
matter density, L%(p) = [k*p/ o], over a length asso-
ciated with the scalar field, I} =my*> =[(¢V" -
Vg/ ol

The constraint on w = 0 theories given in Eq. (25) can
be rewritten in terms of the Lagrangian f(R) as follows:

R [ J'(Ry)
ol =2
Rof"(Ro)
where R, represents the current cosmic scalar curvature.
Note that since ¢ = f/ > 0 to have a well posed theory, it
follows that f” must be small and positive in order to
satisfy Eq. (28). Consequently, any theory with f” <0
leads to an ill defined post-Newtonian limit (m?p <0).
This is the case, for instance, of the Carroll et al. model
[2]. We shall now demand that the interaction range of the
scalar field remains as short as it is today or decreases with
time so as to avoid dramatic modifications of the gravita-
tional dynamics in post-Newtonian systems with the cos-

mic expansion. This can be implemented imposing

P
Rf"(R) >R
as R — 0, where /> < L? represents a bound to the current

<1 (26)

< 1. 27)

- I}L2 > 1, (28)

(29)
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interaction range of the scalar field. Manipulating this
inequality, we obtain

dlog[f'(R)] _ 122 , (30)
dR 1+ IR
which can be integrated twice to give
12R2
fR)=a+ ,8<R +T>,
where B8 > 0. Since f’ and f" are positive, the Lagrangian
is also bounded from below, say, f(R) = a. According to
the cosmological data, « = —2A must be of order a cos-
mological constant 2A ~ 107>* m?. Without loss of gen-
erality, setting 8 = 1 we find that, in order to satisfy the
current solar system constraints, the Lagrangian in metric
formalism must satisfy

€19

I2R?
“2A = f(R) =R -2A+ -, (32)

which is clearly incompatible with nonlinear terms grow-
ing at low curvatures.

Let us consider now the Palatini case, w = —3/2.

Written in terms of the Lagrangian f(R), Eq. (27) turns into
. F'®) I

Rf'(R - —1{L%(p) > 1, 33

f'(R) RFR) (p) (33)

where f' = f'/f} = &/¢o. Since L2(p) ~ 1/p takes its
smallest value for ordinary matter at nuclear densities, it is
reasonable to demand that

F® ‘> 1
RF'(®) | PR

where [? represents a length scale much smaller than £2(p)
at those densities. Note that /> determines the scale over
which the nonlinear corrections are relevant. If [> =0,
which implies f(R) = a + bR, then Eq. (33) would be
valid for all p. Furthermore, if the nonlinear corrections
were important at very low cosmic densities, / would be of
order the radius of the Universe and the nonlinear terms
would dominate at all scales, which would lead to unac-
ceptable predictions, as we pointed out above with regard
to My, G, v, and Q(T). A good example of such patho-
logical effects in the Palatini formalism was studied in [7].
Manipulating Eq. (34), we obtain for /' > 0

PR*> R 1
f=<a +T+§‘/1 + (I’R)? +2—lzlog[lzR +4/1+(PR)?]
(35)

(34)

and for " <0

lsz R 2 P2 1 2 2 P2
fza—T+§,/1+(l R) +2—lzlog[l R+4/1+(I?R)?],
(36)

where the vacuum value f{, has been set to unity and a can
be identified with @ = —2A. We see that, to leading order
in I’R, the Palatini Lagrangian is bounded by

2 p2 2 p2
R—2A—ZTRsf(R)SR—2A+ZTR. 37)

According to Egs. (32) and (37), our conclusion is clear:
laboratory and solar system experiments indicate that the
gravity Lagrangian is nearly linear in R, with the possible
nonlinearities bounded by quadratic terms. Consequently,
f(R) Lagrangians with nonlinear terms that grow at low
curvatures cannot represent a valid mechanism to justify
the cosmic accelerated expansion rate. Such theories lead
to a long-range scalar interaction incompatible with the
experimental tests. In the viable models the nonlinearities
represent a short-range scalar interaction, whose effect in
the late-time cosmic dynamics reduces to that of a cosmo-
logical constant and, therefore, do not substantially modify
the description provided by general relativity. To conclude,
we want to remark that Egs. (32), (35), and (36) tell us how
the Lagrangian f(R) must be near the origin, ’R < 1, not
far from it, IR >> 1, where the post-Newtonian constraints
could not make sense. This fact constraints the possible
f(R) early-time inflationary models. In particular, f(R) =
R + aR? in metric formalism seems compatible with cos-
mic microwave background radiation observations [11].
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