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Consistent Lattice Boltzmann Method
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Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk
viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model
of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann’s kinetic
theory. Simulations demonstrate that the new lattice Boltzmann model is the valid approximation of the
Boltzmann equation for weakly compressible flows and microflows.
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The overwhelming majority of fluid flows of physical
and engineering interest are slow; i.e., characteristic flow
speed u is small compared to the speed of sound cs. This is
quantified by the Mach number, Ma� u=cs, which typi-
cally varies from 10�3–10�2 in hydrodynamic flows (tur-
bines, reactors, etc.) to 10�4 in flows at a micrometer scale.
The simplest characterization of the degree of molecularity
is then the Knudsen number Kn� �=H, the ratio of the
mean free path �, and the characteristic scale H of varia-
tion of hydrodynamic fields (density, momentum, and en-
ergy). When Kn & 10�3, one considers the hydrodynamic
limit where molecularity reduces to a set of transport
coefficients (viscosity, thermal conductivity, etc.). If, in
addition, the Mach number is also small, one obtains the
incompressible hydrodynamics with the ordering Kn�
Ma� 1, and the flow can be characterized solely by the
ratio Re�Ma=Kn (one of the definitions of the Reynolds
number).

Computational fluid dynamics becomes increasingly
more interested in the domain where the Mach number
remains small but the Knudsen number increases, and thus
incompressibility becomes gradually lost. Because of its
relevance to the engineering of microelectromechanical
systems, the branch of computational fluid dynamics fo-
cused on microscale phenomena is often called ‘‘micro-
fluidics’’ [1]. Flows in microdevices are highly subsonic
(with characteristic flow velocities about 0:2 m=s, corre-
sponding to Ma� 10�4), while the Knudsen number varies
from Kn� 10�2 (so-called slip-flow regime) to Kn� 0:1
(moderately rarefied gas flows) [1]. There is much need
for computational models in the domain of slow flows.
Indeed, such methods as molecular dynamics or direct
simulation Monte Carlo are inefficient for slow flows at
small Knudsen numbers [2].

In recent years, the lattice Boltzmann method has drawn
considerable attention as a simulation method for flows at
low Mach numbers. Especially popular are the isothermal
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lattice Boltzmann models (ILBM) without energy conser-
vation [3]. In view of the impressive number of simulations
including turbulent flows, ILBM can be regarded as the
established method for hydrodynamic simulations. Owing
to their outstanding computational features and established
relations to the continuous kinetic theory [4–6], there is
increasing interest in applying lattice Boltzmann models
also to microflow simulation [1,7–10]. The hydrodynamic
(locally conserved) fields in the ILBM are the density �
and the momentum density j, whereas the conservation of
the energy is not addressed. All ILBM models have one
point in common: The lack of energy conservation inevi-
tably leads to a bulk viscosity. Indeed, the nonequilibrium
part of the stress tensor in ILBM reads

Pneq
�� � Kn

�
@�

�j�
�

�
� @�

�
j�
�

��
: (1)

This tensor is not traceless, Pneq
�� � 2Kn@��j�=��, which

immediately leads to the bulk viscosity terms in the equa-
tion for the momentum density. We recall that the physical
bulk viscosity in hydrodynamic models is related to a
redistribution of the energy among the translational and
internal degrees of freedom of molecules rather than to any
nonconservation of the energy. The physical bulk viscosity
of fluids is typically much smaller than the shear viscosity.
Thus, from the physical standpoint, the bulk viscosity of
the ILBM is just spurious because its magnitude is of the
order of the shear viscosity. Certainly, the presence of
the bulk viscosity, spurious or not, by no means precludes
the limit of incompressible hydrodynamics because,
loosely speaking, the divergence of the velocity field u �
j=� vanishes in that limit [11]. Thus, ILBM is a valid
model for the incompressible hydrodynamics. However,
the spurious bulk viscosity of ILBM becomes a severe
drawback when such models are applied to weakly com-
pressible or microflow simulations.
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The best way to illustrate this problem is to consider a
representative example. Plane Poiseuille flow is one of the
most studied benchmarks on gas dynamics. The gas moves
between two parallel plates driven by a fixed pressure
difference between the inlet and outlet. It is known from
the classical kinetic theory [12] that the flow rate Q has the
following asymptotic at low and high Knudsen numbers:

Q0 � �6Kn��1 � s� �2s2 � 1�Kn; Kn� 1;

Q1 � �1=
����
�
p
� ln�Kn� �O�1�; Kn! 1;

with s � 1:015. These two asymptotic limits ensure that
the flow rate has a minimum at some finite Kn (the
Knudsen minimum [12]). While a qualitative agreement
of the ILBM simulations with the continuous-velocity
kinetic theory was found at all Knudsen numbers [9,10],
the quantitative agreement is poor beyond the slip-flow
regime at Kn> 10�2. It was found that the ILBM system-
atically overpredicts the flow rate at small Knudsen num-
bers. This is the effect of the bulk viscosity which can be
qualitatively explained as follows: At low Knudsen num-
bers the behavior is still dominated by particle’s collisions
in the bulk; therefore, the steady state is reached upon a
balance between the frictional force �Kn@�P

neq
�� and the

forcing due to the constant pressure gap between the inlet
and the outlet. Thus, if there is additional contribution of
the bulk viscosity (more friction), this balance at the same
Kn shifts to a higher velocity at the steady state, and results
in the overprediction of the flow rate.

In this Letter we introduce new lattice Boltzmann mod-
els with the energy conservation for weakly compressible
flows. These models are derived from the continuous ki-
netic theory and are free from the drawbacks of the ILBM,
and at the same time they retain in full the outstanding
computational efficiency of the latter.

The starting point of our derivation is the grand canonic
potential of the Boltzmann kinetic theory [12],

H �
Z
F lnFdv��

Z
Fdv� ��

Z
Fv�dv

� �
Z
Fv2dv; (2)

where F�x; v� is the one-particle distribution function, and
�, ��, and � are Lagrange multipliers corresponding to
density, momentum, and energy, respectively. The D�
2-parametric family of functionals (2), where D is the
dimension of the velocity space, describes the equilibrium
states as its minima, 	H � 0, and it also defines the locally
conserved fields (density �, momentum j, and energy e),

@H
@�
� �;

@H
@��
� j�;

@H
@�
� e: (3)

In order to derive the discrete-velocity kinetic theory,
functional (2) is evaluated with the D-dimensional
Gauss-Hermite quadrature, with the Gaussian weight W �
�2�
0�

�D=2 exp��v2=�2
0�	, where 
0 � �kBT0=m� is the
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reduced uniform reference temperature. Quadrature evalu-
ation of an integral replaces it by a sum,

R
W�v�G�v�dv 
Pnd

i�1 WiG�vi�, where vi, i � 1; . . . ; nd, are the nodes of the
quadrature, and Wi are corresponding weights. In our case,
the nodes of the quadrature (discrete velocities) are at the
zeroes of Hermite polynomials. For concreteness, we shall
consider the third-order Hermite polynomial. Then nd �
3D, and the discrete velocities and weights are constructed
as follows: For D � 1, the three roots and corresponding
weights are ��

��������
3
0

p
; 0;

��������
3
0

p
� and �1=6; 2=3; 1=6�; forD>

1, the roots are all possible tensor products of the roots in
D � 1, and the weights are corresponding products of one-
dimensional weights. We shall consider D � 3 below, that
is, nd � 27 (same considerations apply to any quadrature,
in particular, to the popular 9-velocity model for D � 2).
As is well known, the third-order quadrature has the unique
feature that its nodes form a face-centered cubic lattice,
which is the crucial feature to the further lattice Boltzmann
discretization in space and time. Introducing the popula-
tions, fi � Wi�2�
0�

3=2 exp�v2
i =�2
0�	F�x; vi�, and using

the reduced discrete velocities, ci � vi=
��������
3
0

p
, we write the

quadrature for (2) as

H �
X27

i�1
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�
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��fi � ��fici � �fic

2
i

�
: (4)

Differentiation of (4) with respect to Lagrange multipliers
implies the locally conserved fields in the discrete case,

X27

i�1

f1; ci�; c
2
i gfi � f�; j�; 3p� �

�1j2g: (5)

The equilibria feq
i are now found as minima ofH (4). From

the extremum condition, 	H � 0, it follows that

feq
i � Wi expf��� ��ci� � �c2

i g: (6)

In order to express the Lagrange multipliers in (6) in terms
of hydrodynamic fields (5), we substitute (6) into (5) and
derive the functions ���; j; p�, ����; j; p�, and ���; j; p�
by perturbation for small momentum, owing to the fact that
����; 0; p� � 0, and that the zero-momentum functions
���; 0; p� and ���; 0; p� can be found in a closed form.
Computation is quite straightforward, and we write here
the final result to second order in the momentum:
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: (7)

The prefactor in this formula has the following limit when
�p=�� ! �1=3�:

lim
�p=��!�1=3�

�
1�

p
�

�
3
� p

�

2�1� p
��

�
c2
i
� Wi: (8)
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FIG. 1. Flow rate in the pressure driven Poiseuille flow as a
function of inverse Knudsen number. Comparison of the present
energy-conserving model with the isothermal lattice Boltzmann
model [6] and the continuous linearized Boltzmann-BGK model
[13].
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The implication of (8) will be important below when
discussing the relation of the present model to the ILBM.

We now proceed with the evaluation of the stress tensor
Peq
����; j; p� and of the energy flux qeq

� ��; j; p� at equilib-
rium. The important observation to be made here is that if
the pressure to density ratio satisfies the condition �p=�� �
�1=3�, then Peq

�� and qeq
� satisfy the corresponding relations

pertinent to the continuous-velocity Maxwell distribution.
In dimensional units, the condition just mentioned reads
p � �kBT0��=m; that is, it corresponds to the ideal gas
equation of state at the reference temperature of the
Gaussian weight. Moreover, if we allow small variations
of the pressure around the point p=� � 1=3 [weakly com-
pressible flows, j�p=�� � �1=3�j & Ma2], then Maxwell’s
form of Peq

�� and qeq
� persists:

Peq
�� �

X27

i�1

feq
i ci�ci� � p	�� �

j�j�
�

; (9)

qeq
� �

X27

i�1

feq
i ci�c

2
i � 5

p
�
j�: (10)

With the equilibrium (7), we write up the simplest
kinetic equation [the Bhatnagar-Gross-Krook (BGK)
model],

@tfi � ci�@�fi � �
1

�
�fi � f

eq
i ��; j; p�	; (11)

where � > 0 is the relaxation time. In order to find out the
hydrodynamic limit of the model, we perform the
Chapman-Enskog analysis at low Mach numbers. In so
doing, we neglect all terms in j� of the order of three
and higher, and we end up with the following nonequilib-
rium expressions for the stress and the heat flux:

Pneq
�� � ��p
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; (12)

qneq
� � �2�p@�

�
p
�

�
: (13)

The most important achievement is that now the nonequi-
librium (Newtonian) stress (12) is traceless, as pertinent to
the classical case of Boltzmann’s fluid considered herein.
That is, by preserving the energy conservation in the
derivation, we eliminated the spurious bulk viscosity of
ILBM. The heat flux (13) obeys the Fourier law. It should
be noted that the present model does not solve the problem
of bulk viscosity and heat conductivity entirely, nor can it
be applied to highly compressible flows (supersonic flows,
for example). However, the domain of validity is wide
enough to include such important flows as convection
flows and microflows.

We have implemented the lattice Boltzmann space-time
discretization of the kinetic Eq. (11) and redone the micro-
Poiseuille flow simulation mentioned in the introduction.
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The flow is driven by a constant pressure drop between the
inlet and the outlet, and, as the kinetic theory suggests [12],
the temperature variation is negligible. Results are pre-
sented in Fig. 1, where the present model is compared to
the exact solution of the continuous linearized BGK model
[13], and the 2DQ9 isothermal lattice Boltzmann model
with the spurious bulk viscosity [14]. It is clearly visible
that the effect of the spurious bulk viscosity is eliminated at
small Knudsen numbers, and that the quantitative agree-
ment with the continuous BGK model extends up to Kn�
0:1. For higher values of Knudsen numbers, the agreement
remains qualitative. The reason is in the simplicity of the
present model with only 27 velocities. Models with more
velocities extend the domain further in Kn (see, e.g., [5,6]).
However, from the standpoint of practical applications in
microflow simulations, the domain Kn< 0:1 is most rele-
vant, and the present lattice Boltzmann model fits well into
this domain.

In another simulation, we compared the present model
with the steady-state temperature variation between two
parallel walls kept at the temperatures TL and TR at a
distance L. Analytical solution to the stationary continuous
linearized BGK model reads [15] T � ��TL � TR�=�1�
3:882 34Kn�	x� ��TL � TR�=2	, where x is the dimension-
less distance from the center of the channel. Diffusive wall
boundary conditions [7] were applied, and a small tem-
perature gap TL � TR was considered (approximately 1%
variations of the average temperature). Results are pre-
sented in Fig. 2. Quantitative agreement with the continu-
ous kinetic theory up to Kn� 0:05 is observed. We recall
here that there is no adjustable slip coefficients, or other
tunable parameters, in our simulation, and thus it is re-
markable that the model is able to reproduce accurately the
velocity and the thermal slip as known from the classical
kinetic theory. This clearly demonstrates that the present
lattice Boltzmann equation is a valid model of the
Boltzmann equation for almost isothermal low Knudsen
number flows.
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FIG. 2. Steady-state temperature variation between parallel
walls. Reduced temperature Y � �T � T0�=�TL � TR� is shown
as the function of the reduced distance x at (a) Kn � 0:001 and
(b) Kn � 0:05. Symbols, simulation; line, analytical solution by
Bassanini, Cercignani, and Pagani [15].
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Finally, let us place our derivation with respect to pre-
viously reported lattice Boltzmann models on the same
lattice. If we substitute p � �1=3�� into the equilibrium
function (7), and use the limit (8), then feq

i ��; j; �=3�
recovers the second-order polynomial equilibrium of the
isothermal lattice Boltzmann method on the same lattice,
and instead of the traceless stress tensor (12), we recover
(1) with the bulk viscosity component. It needs to be
stressed that the second-order polynomial in j (7) is an
approximation to the positive-definite discrete-velocity
equilibrium (6). Same as with the isothermal models, this
second-order approximation simply happens to be good
enough for stable computations at Ma< 0:1. If we keep the
relation p � �1=3�� to all the orders in j, we recover the
exact positive-definite equilibrium of the isothermal 27-
velocities entropic lattice Boltzmann model [6]:

feq
i ��; j; �=3� � �Wi

Y3

��1

�2�
����������������������������
1� 3�j�=��2

q
�

�

�
2�j�=�� �

����������������������������
1� 3�j�=��2

p
1� �j�=��

�
ci�
: (14)

Our approach to the discretization of the velocity space
differs from the earlier attempts [4,5]. While we use the
same Gauss-Hermite quadrature, we apply it on the grand
canonical potential (2) [that is, we evaluate the velocity
integral (2) as pertinent to the meaning of a quadrature],
and after that find the discrete-velocity equilibrium upon
minimization of the discrete-velocity grand canonical po-
tential (4). Instead, the authors of [4,5] evaluate the local
Maxwellian (that is, they evaluate a function, not an
integral) of continuous kinetic theory, M��; j; T; v� �
��2�kBT=m�

�D=2 exp��m�v� u�2=2kBT	, u � j=�, on
the nodes of the quadrature. Certainly, just replacing
M��; j; T; v� ! Mi��; j; T; vi� makes no sense because
the conservation laws will be lost. However, it was
noticed in [4] that if the second-order expansion of the
Maxwellian is used instead, M�2� � �W�1� av�j� �
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bv�v�j�j��, the replacement, M�2� ! �Wi�1� avi�j� �
bvi�vi�j�j��, coincides with the previously known
second-order equilibrium of the ILBM [14]. It should be
stressed that while in [4,5] the Maxwellian must be trun-
cated to second order (to rescue conservation laws), and
thus positivity of populations has to be sacrificed together
with the second law of thermodynamics (Boltzmann’s H
theorem), our Eq. (7) is just a good approximation to
the positive equilibrium (6). The discretization of the ve-
locity space done at the level of generating functional (2)
violates none of the properties of the continuous kinetic
theory [16].

In conclusion, we have derived the genuine lattice
Boltzmann model for simulations of incompressible and
weakly compressible flows. The new model, unlike the
ILBM, is a valid physical model of ideal fluid. It retains
the computational efficiency of the ILBM models on the
same lattices, and at the same time it extend considerably
the domain of validity of simulations especially into the
microflow domain. Even in the case of hydrodynamics, the
present models should be preferred on the grounds that
they correspond more to the physics.
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