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Logarithmic Conformal Field Theory and Boundary Effects in the Dimer Model
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We study the finite-size corrections of the dimer model on a 1� N square lattice with two different
boundary conditions: free and periodic. We find that the finite-size corrections depend in a crucial way on
the parity of N; we also show that such unusual finite-size behavior can be fully explained in the
framework of the c � �2 logarithmic conformal field theory.
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Universality, scaling, and exact finite-size corrections in
critical systems have attracted much attention in recent
decades [1–4]. It has been found that critical systems can
be classified into different universality classes so that the
systems in the same class have the same set of critical
exponents, universal finite-size scaling functions, and am-
plitude ratios [1,2]. Two-dimensional critical systems are
parametrized by the central charge c [5], directly related to
the finite-size corrections to the critical free energy [6].

In this Letter, we address this question for dimers de-
fined on a square lattice, with three main purposes: (i) We
dissipate the confusion existing in the literature about the
value of the central charge [7,8] due to the (mis)inter-
pretation of the finite-size corrections in terms of the
central charge rather than the effective central charge;
(ii) we give a bijection of dimer coverings with a spanning
tree and Abelian sandpile model, which not only allows a
proper understanding of the dimer model but proves also
very useful to calculate finer effects, such as the change of
boundary conditions; (iii) using this bijection, we clarify
and explain why a change of parity of the lattice size causes
a change of the effective central charge but not of the
central charge itself.

The dimer problem on planar lattices belongs to the class
of ‘‘free-fermion’’ models [9]. Its solution has been ob-
tained with the Pfaffian approach [10] and then reproduced
by a variety of methods [11]. In contrast to the statistics of
simple particles, the critical behavior of the dimer model is
strongly influenced by the structure of the lattice space.
The square lattice dimer model is critical with algebraic
decay of correlators [12]. For the dimer model on the
anisotropic honeycomb lattice, which is equivalent to a
five-vertex model on the square lattice [13], the free energy
exhibit a potassium dihydrogen phosphate-type singularity.
For the triangular and some decorated lattices, the dimer
model exhibits Ising-type transitions [14]. Thus, it appears
that the dimer model itself has not a single critical behavior
but several critical behaviors associated with different
universality classes.
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In what follows, we consider the finite-size effects for
close-packed dimers on finite square lattices, with free
boundary conditions on all sides (strip geometry) and
with a periodic boundary condition in one direction (cyl-
inder). In all cases, we find them to be consistent with a
central charge c � �2. This conclusion relies on a careful
distinction between the central charge c and the so-called
effective central charge ceff � c� 24hmin [15], which is a
boundary dependent quantity. The value c � �2 is further
confirmed by calculating the effect of a change of bound-
ary conditions. We find that, in the scaling limit, it corre-
sponds to the insertion of a boundary primary field of
weight �1=8, belonging to a logarithmic conformal field
theory with c � �2.

Finite-size analysis.—Let us consider the dimer model
on anM� N square lattice LwithM rows andN columns.
The topology of L is fixed by the boundary conditions: It
forms a rectangle if free boundary conditions are imposed
in two directions, a cylinder or a torus if periodic boundary
conditions are chosen in only a horizontal direction or two
directions.

The partition function of the dimer model is given by

ZM;N�zv; zh� �
X
znvv z

nh
h ; (1)

where the summation is over all dimer covering configu-
rations, zv and zh are the dimer weights in the vertical and
horizontal directions, respectively, and nv and nh are the
numbers of vertical and horizontal dimers, respectively.

The partition functions of the dimer model with the
boundary conditions discussed above can all be expressed
in terms of Z�;��z;M;N� for �;� � 0; 1

2 [4] with

Z2
�;��z;M;N� �

YN�1

n�0

YM�1

m�0

4
�
z2 sin2 ��n� ��

N

� sin2 ��m� ��
M

�
: (2)

Here z � zh=zv, which we set equal to 1 from now on.
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The general theory about the asymptotic expansion of
Z�;� for large M, N has been presented in Ref. [3]. For
what follows, the asymptotic expansion of the free energy
per unit length associated to Z�;� is all we need. The result
reads [3]

F�;��N� � � lim
M!1

1

M
lnZ�;��1;M;N�

� �
2G
�
N �

X1
p�0

�
�
N

�
2p�1 2z2p

�2p�!

B2p�2���

2p� 2
; (3)

where z0 � 1, z2 � �2=3; . . . ; G � 0:915 965 is the
Catalan constant, and the Bp��� are the Bernoulli poly-
nomials, B2��� � �2 � �� 1

6 . These formulas allow one
to compute the asymptotic expansion of the free energy FN
per unit length of the1� N lattice for largeN and for free
and periodic boundary conditions.

Let us first consider the case of an infinitely long strip of
width N with free boundary conditions. For N even, the
results of Ref. [4] show that

Ffree
N;even �

1
2F1=2;0�N � 1� � log�1�

���
2
p
�: (4)

The expansion (3) then gives
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Similar calculations forN odd lead to a formula in terms of
Z0;1=2�N � 1� and yield
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The analogous results for the periodic case, i.e., an infinite
cylinder of perimeter N, read

Fper
N;even � �

G
�
N �

�
6

1

N
� � � � ; (7)
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N;odd � �

G
�
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1

N
� � � � : (8)

The free energy per unit length of an infinitely long strip
of finite width N at criticality has the finite-size scaling
form [6]

F � fbulkN � fsurf �
A
N
� � � � ; (9)

where fbulk and fsurf are, respectively, the bulk and the
surface (boundary) free energy densities, and A is a con-
stant. Though the free energy densities fbulk and fsurf are
not universal, the constant A is universal. The value of A is
related to the conformal anomaly c of the underlying
conformal theory and depends on the boundary conditions
in the transversal direction. These two dependencies com-
bine into a function of the effective central charge ceff �
c� 24hmin,

A � �
�
24
ceff � �

�
hmin �

c
24

�
on a strip; (10)
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A � �
�
6
ceff � 4�

�
hmin �

c
24

�
on a cylinder: (11)

The number hmin is the (chiral) conformal weight of the
operator with the smallest scaling dimension present in the
spectrum of the Hamiltonian with the given boundary
conditions (for the cylinder, we assumed that this operator
is scalar, hmin � �hmin).

In a unitary theory, one has hmin � 0 on a cylinder (with
a periodic condition) and on a strip with identical left and
right boundary conditions, and hmin > 0 otherwise. In a
nonunitary theory, such as the conformal theory discussed
here, there is no restriction on hmin.

The finite-size corrections computed above have all the
form (9), with the effective central charge depending on the
parity ofN; see (10) and (11). We will show that indeed the
effective central charge, and not the central charge itself,
depends on the parity of N, because the value of hmin does,
due to the fact that changing the parity of N in effect
changes the boundary condition.

To understand this peculiarity of the dimer model, we
consider, first on the strip and then on a cylinder, the
mapping of the dimer model to the spanning tree model
[16] and, equivalently, the Abelian sandpile model [17].

Dimers on a strip.—Let us consider first the dimer
model on the rectangular lattice L of size M� N with
free boundary conditions. Since we are interested in the
limit M ! 1, the parity of M will not matter here. For
simplicity, we take M odd and discuss successively the
cases N odd and N even.

For M and N both odd, the bijection between dimer
coverings on L with one corner removed and spanning
trees on the odd sublattice G � L is well known [7,16].

A dimer containing a site of G, in blue in Fig. 1, can be
represented as an arrow directed along the dimer from this
site to the nearest neighbor site of G. It is easy to prove that
the resulting set of arrows generates a uniquely defined
spanning tree, rooted at the corner which had been re-
moved from L (see Fig. 1). Since the dimers which do
not contain a site of G are completely fixed by the others,
one has a one-to-one correspondence between dimer cover-
ings on L minus a corner and spanning trees on G. This
allows one to express the number of dimer configurations
by the Kirchhoff theorem as Z � det�, where � is the
Laplacian matrix for spanning trees on G. As shown in
Ref. [17], spanning trees on G, rooted at a corner, are in
bijection with the configurations of the Abelian sandpile
model (ASM) on G, with closed boundary conditions on
the four boundaries, the only sink (dissipative) site being
the root of the trees.

When M ! 1, the lattice G becomes an infinitely long
strip of width N and, in the ASM language, closed bound-
ary conditions on the two vertical sides. Many independent
arguments and explicit calculations all converge to a cen-
tral charge c � �2 for the ASM on a square lattice [17–
19]. On the other hand, the spectrum of the ASM
Hamiltonian on a slice of the strip with closed boundary
2-2



FIG. 1 (color). Mapping of a dimer covering to a spanning tree
on the odd sublattice, for an M� N � 5� 7 lattice (top) and a
5� 8 lattice (bottom). In both cases, the solid dots represent the
sites of the odd sublattice G, and the open dots are the roots of
the trees.
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conditions at the two ends has been computed in Ref. [18].
It is given by a single representation R, reducible but
indecomposable, of the chiral algebra of a rational loga-
rithmic conformal field theory with c � �2 [20]. The
representation has two ground states, the identity operator
and its logarithmic partner, both of conformal weight 0, so
that hmin � 0. The effective central charge in this sector is,
therefore, ceff � �2, and the general formula (10) repro-
duces the finite-size corrections (6).

When M is odd and N is even, dimer coverings exist on
L without the need to remove a corner. In this case, the
above construction leads to a set of spanning trees on the
odd sublattice G, where certain arrows may point out of the
lattice from the right vertical side (Fig. 1). Viewing this
vertical boundary of G as roots for the spanning trees, we
see that dimer coverings on L map onto spanning trees on
G which can grow from any site of the vertical side. In turn,
the spanning trees map onto the ASM configurations with
one vertical open, dissipative boundary and the three other
closed.

In the limit M ! 1, the lattice becomes an infinite strip
with open and closed boundary conditions on the two sides.
In this case, the results of Ref. [18] show that the ground
state of the Hamiltonian with such boundary conditions is a
primary field of conformal weight hmin � �1=8. With c �
�2, this yields ceff � 1 and again the formula (10) cor-
rectly gives the result (5).

Let us note that the bijection between the dimer cover-
ings and the spanning trees holds if we use the even
sublattice instead of the odd one. The boundary conditions,
however, change. If N is odd, the vertical sides (and the
horizontal ones as well, for M odd) become open rather
than closed. The spectrum of the corresponding Hamil-
tonian change, with a nondegenerate ground state being the
identity operator [18]. Thus, the value hmin � 0 remains. If
N is even, the left and right boundaries, previously closed
and open, respectively, become open and closed, so that the
Hamiltonian remains the same, hmin � �1=8.
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The equivalence of the odd and even sublattices is a
duality property. The two sublattices are dual to each other,
and the spanning trees on Geven are dual to those on Godd. It
is not difficult to check that open and closed boundary
conditions are exchanged under duality.

Thus, the leading finite-size corrections for an infinitely
long strip of widthN agree with the prediction of a c � �2
conformal field theory, provided one realizes that changing
the parity ofN genuinely changes the boundary conditions,
an effect due to the strong nonlocality of the dimer model.
The change of boundary conditions is not apparent in the
dimer model itself but is manifest when one maps it onto
the spanning tree model or the sandpile model.

The primary field with h � �1=8 can be further tested
[18]. If, on a rectangular lattice M� N, we remove n sites
from the lower boundary, the height will be M or M� 1
and will, therefore, take on the two parities. This has the
effect of changing the boundary condition along the lower
boundary, from closed to open, and back to closed (or vice
versa). We have checked that the universal part of the ratio
of partition functions, after and before the removal, and
expected to be equal to h�h�0��h�n�i 	 n�2h, where �h is
the boundary field that changes a boundary condition from
open to closed, is indeed asymptotically equal to n1=4, in
the limit M;N ! 1, supporting h � �1=8.

Dimers on a cylinder.—We consider here an M� N
rectangular lattice L with a periodic boundary condition
in the horizontal direction, so that L is a cylinder of
perimeter N and height M. As before, we will eventually
take M to infinity, which makes its parity irrelevant. We
choose M even. According to the discussion of the pre-
vious section, the top boundary of the cylinder then is
subjected to open boundary conditions (in ASM terms)
while the bottom one is closed. We separate the cases N
odd and N even. If N is odd, we select the sublattice G
consisting of those sites of L having odd-odd coordinates.
It is easy to see that two columns of G will contain sites
which are neighbors in G and in L (connected by horizon-
tal bonds). Therefore, a dimer may contain zero, one, or
two sites of G. The dimers containing no site of G are
completely fixed by the others and play no role. For the
others, we do the same construction as before. If a dimer
touches one site of G, we draw an arrow directed along the
dimer from that site to the nearest neighboring site of G.
However, for a dimer containing two sites of G, the two
arrows would point from either site to the other, ruining the
spanning tree picture. It can, nevertheless, be restored in
the following way.

Instead of seeing the two arrows as pointing from one
site to its neighbor, we say that they point towards roots
inserted between the neighbor sites, thus replacing the
arrows by . This in effect amounts
to cutting the cylinder along the bonds of L which connect
sites of G, unwrapping it into a strip, and adding columns
of roots on the left and right sides of the strip. The new
arrow configurations define spanning trees, rooted any-
where on the left and right boundaries. So dimer coverings
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on the original cylinder are mapped to spanning trees on a
strip, with open top and closed bottom horizontal bounda-
ries (we chose M even) and open vertical boundaries.

When M goes to infinity, the lattice becomes an infinite
strip with an open boundary condition on either side. As
mentioned above, the ground state of the Hamiltonian is
the identity, of weight hmin � 0, leading to an effective
central charge ceff � �2. The general formula (10) for the
strip gives the correct result (8).

This is a very unusual situation. Although the dimer
model is originally defined on a cylinder, it shows the
finite-size corrections expected on a strip and must really
be viewed as a model on a strip.

For N even, the problem of having two arrows pointing
from and to neighbor sites does not arise; however, the
arrows one obtains do not define spanning trees but rather a
combination of loops wrapped around the cylinder and tree
branches attached to the loops. Each loop has two possible
orientations. The one-to-one correspondence between the
oriented loops combined with tree branches from one side
and dimer configurations from the other side can be estab-
lished as above. The enumeration of the loop-tree configu-
rations needs a generalization of the Kirchhoff theorem,
Z � det~�, where ~� is the discrete Laplacian with anti-
periodic boundary conditions. In the continuum limit, this
leads to the free theory of antiperiodic Grassmann fields
which, in turn, gives hmin � �1=8 [21]. From the general
formula (11) for the cylinder, we see that the finite-size
correction (7) is again consistent with c � �2.

The above interpretation of the peculiarities of the dimer
model shed a new light on old calculations by Ferdinand of
the partition function of the dimer model on aM� N torus
[22]. WhenM andN are both even, the universal part of the
partition function equals

Zeven;even �
�2

2 � �
2
3 � �

2
4

2�2 �q�; (12)

in the limit M;N ! 1 with fixed ratio q � exp��2�M
N�.

This is exactly equal to the partition function Zc��2�q� �
j��1=8j

2 � 2j�0 � �1j
2 � j�3=8j

2 of the c � �2 rational
conformal theory developed in Ref. [20], confirming the
value of c � �2 (and the value hmin � �1=8 found for the
even cylinder). In case one of M or N is odd, the partition
functions are

Zodd;even �
�2

2�
�
���
q
p
�; Zeven;odd �

�4

2�
�
���
q
p
�: (13)

These are cylinder partition functions of the same c � �2
conformal theory [18], in agreement with the view that a
periodic dimension of odd size is actually not periodic, and
correspondingly tori with one odd dimension are, in fact,
cylinders.
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