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Concurrence of Mixed Multipartite Quantum States
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We propose generalizations of concurrence for multipartite quantum systems that can distinguish
qualitatively distinct quantum correlations. All introduced quantities can be evaluated efficiently for
arbitrary mixed sates.
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Quantum correlations display one of the crucial—and
arguably the least understood—qualitative differences be-
tween classical and quantum systems. While we start to
develop some kind of intuition for nonclassical correlations
which arise in quantum systems composed of two subsys-
tems, our comprehension remains rather strained when we
deal with a larger number of constituents. This qualitative
difference between bi- and multipartite quantum systems
originates—among others—from the fact that in bipartite
quantum systems there are no qualitatively different quan-
tum correlations, i.e., any state % can be prepared with
local operations and classical communication (LOCC),
starting out from a maximally entangled state. Therefore,
the entanglement of bipartite states can be well character-
ized by a single scalar quantity, such as, e.g., the entangle-
ment of formation [1]. In multipartite systems this is no
more true. For example, the label ‘‘maximally entangled‘‘
can be justified for both GHZ [2] and W states, though
none of them can be prepared from the other using only
LOCC [3]. Hence, they are characterized by qualitatively
different, inequivalent quantum correlations.

Also the very definition of multipartite separability and
entanglement requires some refinement as compared to
bipartite systems: An N-partite system is described by a
Hilbert space H that decomposes into a direct product of
N subspaces H �H 1 � . . . �H N, where the dimension
of the space H i will be denoted by ni. A multipartite state
acting on H is separable [4], if it can be written as a
convex sum of direct products of subsystem states
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In such a state all correlations between any of the subsys-
tems are of classical nature, and can be described in terms
of the classical probabilities pi. However, the tensorial
structure of H holds room for qualitatively distinct quan-
tum correlations which go beyond the classical framework.
A state is biseparable, if it can be written as a convex sum
of states which each decompose into a direct product of at
least two factors. This definition can be immediately gen-
eralized to m separability (m � N), which provides a fine
graduation of states according to their different degrees of
separability.
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In general, it is an open problem to decide on the degree
of separability of a given state %. Some substantial progress
has been achieved with entanglement witnesses [5,6],
which allow us to distinguish some multipartite entangled
states from biseparable ones. Though, their use also has
two severe drawbacks: some a priori knowledge on the
considered state is required, in order to construct a suitable
witness—and there is no general prescription for such
construction. Moreover, a witness can give reliable infor-
mation only if it actually does detect the considered state—
if not, this can either be due to the fact that the witness is
not well adapted for the given state, or that the state simply
does not contain the quantum correlations seeked for. A
secure answer is only obtained if all (infinitely many)
different witnesses are consulted.

In the present Letter, we follow an alternative route, by
formulating a general recipe for the characterization of
targeted separability properties of arbitrary mixed
N-partite states. No a priori knowledge on the state under
scrutiny will be needed here. Our approach is built upon
suitable generalizations of the concurrence of bipartite
quantum states, and on recently derived [7], in general
tight [8], lower bounds thereof.

Let us start with a novel definition of pure state con-
currence which is different from the ones familiar from the
published literature [9,10], though comprises these as spe-
cial cases. A simple definition on the level of pure states is
an indispensable prerequisite for the treatment of mixed
states, which we are finally aiming at.

By analogy to the expectation value of an observable, the
expectation value of a suitably chosen linear, Hermitean
operator comes to mind as a simple choice. However, there
is none such that all expectation values with respect to
entangled states are strictly positive, whereas they vanish
for all separable states—so that entanglement can be
identified unambiguously. Though we will see that the
expectation value of linear, Hermitean operators A with
respect to two copies of a pure state can capture entangle-
ment properties very well, which provides a solid basis for
generalizations for multipartite mixed states.

So which operators A serve our purpose? Of course,
concurrence needs to be invariant under local unitaries.
Since this must hold for any state, it is natural to require
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that A itself bears this invariance property. The projectors
P�i�� and P�i�� onto the antisymmetric and symmetric sub-
spaces H i ^H i and H i �H i of H i �H i [11] (i �
1; . . . ; N labels the individual subsystems) exhibit the de-
sired invariance property, since any local unitary trans-
formation Ui �Ui on H i �H i commutes with the
exchange of both copies. Hence, they can be used as
elementary building blocks of A �

NN
j�1 P

�j�
sj (sj � 	),

which immediately inherits their invariance with respect to
local unitaries. Thus, we can define a generalized concur-
rence of a pure, N-partite state j�i as

c��� �
������������������������������������������������
h�j � h�jAj�i � j�i

q
; (2)

where A acts on
NN

i�1 H i �H i [12], as shown sche-
matically in Fig. 1.

The above expression for A in terms of products of P�i�	
allows us to tailor Eq. (2) such as to address specific types
of correlations, as follows from inspection of the action of
P�i�	 on a twofold copy j��i�i � j��i�i 2H i �H i of a one-
party state: Since any such twofold copy is symmetric, the
expectation value of P�i�� vanishes identically, whereas the
corresponding expression for P�i�� gives unity. Now, con-
sider an N-partite state that separates into a one-party state
(let us take subsystem N, for simplicity) and a state of the
remaining N � 1 subsystems. If A in Eq. (2) comprises
the term P�N�� , the corresponding concurrence necessarily
vanishes, thus highlighting the vanishing entanglement
between subsystem N and the rest. If, instead, one chooses
to incorporate the term P�N�� in Eq. (2), the respective
concurrence will be sensitive to �N � 1�-partite correla-
tions between the N � 1 first subsystems. This argument
can be iterated recursively down to bipartite correlations,
such that the original concurrence [9,10] of bipartite sys-
tems emerges with the specific choice A � 4P�1�� � P�2�� .

Similarly to the case of bipartite systems, also our
presently introduced N-partite concurrences can be gener-
alized for mixed states via their convex roofs,
(1) (2) (k) (N)

FIG. 1. The concurrence of a pure state j�i is defined in terms
of two copies (shown schematically as gray boxes) of j�i, and of
an operator A acting on them. A is composed of projectors P�i�

acting on the two copies of subsystem i only (shown as circles in
different gray scales).
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c�%� � inf
X
i

c� i�; (3)

where the infimum is to be taken among all sets of properly
normalized N-partite states such that % �

P
ij iih ij.

Given one such set—e.g., the spectral decomposition
fj�iig of %—all legitimate decompositions can be con-
structed as linear combinations j ii �

P
jVijj�ji, with the

additional constraint that the complex prefactors Vij define
a left unitary matrix, i.e.,

P
iV


ijVik � �jk [13]. The above

optimization over decompositions into pure states is thus
equivalent to an optimization over left unitary transforma-
tions, acting on the tensor Â, with elements Âlm

jk �

h�jj � h�kjAj�li � j�mi [7,14].
Since left unitary transformations define a high dimen-

sional, continuous set, the explicit evaluation of Eq. (3)
tends to be rather cumbersome for a general mixed state.
However, techniques which were devised to ease that task
in the bipartite case [7] can be generalized in a straight-
forward manner, because the algebraic structure of the
above N-partite concurrences (2) is strictly identical to
the bipartite definition: A and therefore also Â is
Hermitean and positive, which allows the decomposition
Âlm

jk �
P
�T

�
jk�T

�
lm�

, in terms of the matrices T�jk �

h�jj � h�kj��i, which in turn are defined via the spectral
decomposition A �

P
�j��ih��j. Analogous to [7] one

can invoke the Cauchy-Schwarz inequality and the triangle
inequality and bound the concurrence of an arbitrary mixed
state from below by

c�%� � inf
V
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s
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j�V�VT�iij; (4)

with � �
P
�z�T

�; and the inequality holds for an arbi-
trary set of complex numbers z�, such that

P
�jz�j

2 � 1
[7].

Without loss of generality, we can assume the number
of factors P�i�� in the explicit representation of A to be
even, since otherwise the concurrence vanishes identically
[15]. Therefore, any j��i is symmetric with respect to the
exchange of the two copies of H , and thus, the matrices
T� are complex symmetric. Consequently, the infimum on
the right-hand side of Eq. (4) can be evaluated algebrai-
cally [9,16], and the explicit solution in terms of the
singular values �j (labeled in decreasing order) of � reads
�1 �

P
j>1�j. The choice of the prefactors z�—that de-

termine �—can be optimized numerically in order to
approach the optimal lower bound. Furthermore, a purely
algebraic, and in most cases excellent [17,18], approxi-
mation for c�%� can be obtained by substituting � by
the matrix �qp with elements �qpij � h�1j � h�1jAj�ii �

j�ji=
������������������������������������������������������
h�1j � h�1jAj�1i � j�1i

p
. Herein, j�1i is the ei-

genvector associated with the largest eigenvalue in the
spectral decomposition of %.
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The above does not only apply to the discrete set of
concurrences discussed so far, but also to the following
continuous interpolation between them: Instead of a single
direct product of projectors onto symmetric and antisym-
metric subspaces, one may equally well consider convex
combinations thereof,

A �
X

V fsi�	gQ
N
i�1

si��

pfsig
ON
j�1

P�j�sj ; pfsig  0; (5)

where V fsi � 	g represents all possible variations of an
N string of the symbols � and �, and the summation is
restricted to contributions with an even number of projec-
tors onto antisymmetric subspaces. Hence, through the
arbitrariness of the choice of the pfsig, there is actually a
continuous family of concurrences, and we leave the in-
terpretation of such N-particle concurrences for arbitrary
pfsig as an open (and intriguing) question.

However, a discrete subset ofN-partite concurrences has
a transparent physical interpretation, and precisely allows
us to distinguish different categories of multipartite entan-
glement. As an illustration, let us focus on some examplary
tripartite and four-partite concurrences, which target at
specific types of multipartite quantum correlations (see
also Table I), in the remainder of the present Letter. Note
that contenting ourselves with pure states, does not imply
any restriction, since the concept of convex roofs guaran-
tees that all properties on the level of pure states immedi-
ately convey to mixed states, as, e.g., also utilized in [18].

Biseparability with respect to specific partitions of tri-
partite states is easily detected by c�3�1 , with A � 4P�1�� �
P�2�� � P�3�� in Eq. (5) above, and, analogously, by c�3�2 , with
A � 4P�1�� � P

�2�
� � P

�3�
� , and by c�3�3 , with A � 4P�1�� �

P�2�� � P
�3�
� . Whereas c�3�1 and c�3�2 vanish identically for

biseparable states like j i � j’�12�i � j� �3�i, c�3�3 reduces
to the bipartite concurrence of j’�12�i, i.e., c�3�3 � � �
c�’�12��. Thanks to the above construction (3) as a convex
roof, these properties also pertain to mixed states. Note,
however, that c�3�3 �%� for a biseparable mixed state % is not
equivalent to c�Tr3%�: Whereas the latter expression gives
the bipartite correlation of % only for a product state % �
	�12� � 
�3�, c�3�3 is significantly more powerful, and per-
TABLE I. Some examplary tripartite and four-partite concurrences
concurrences c�3�i (i � 1; 2; 3), c�4�12 , and c�4�34 either vanish or reduce to

part (j’�12�i, j’�13�ij’�23�i, j’�123�ior j� �34�i) of j i, with ���� �
����
1�

p
uncorrelated with the other system components.

j i 2 �3
i�1H i c�3�1 � � c�3�2 � � c�3�3 � � C3� � j i 2

j’�12�i � j� �3�i 0 0 c�’�12�� c�’�12�� j’�123�

j’�13�i � j� �2�i 0 c�’�13�� 0 c�’�13�� j’�12�

j� �1�i�j’�23�i c�’�23�� 0 0 c�’�23�� j�
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forms the same task for any state with arbitrary classical
correlations between H 3 and the combined system of H 1

and H 2, i.e., for states alike
P
ipi	

�12�
i � 
�3�i , pi  0.

Arbitrary quantum correlations can be accounted for by
C3 with p��� � p��� � p��� � 4 and p��� � 0 in
Eq. (5), which vanishes only for completely separable
states. For any biseparable state its value is given by the
bipartite concurrence of the remaining entangled part.

Similarly, different degrees of separability are also cap-
tured in larger systems. For example, concurrences like
c�4�ij , with A � 16P�1�s1

� P�2�s2
� P�3�s3

� P�4�s4
, si � sj � �,

and sk � � for i � k � j, determine with respect to which
bipartite partition a mixed four-partite state is separable,
and reduce to the bipartite (tripartite) concurrences of the
entangled remainder.

Moreover, there is also the concurrence c�4�, defined
through A � 16P�1�� � P

�2�
� � P

�3�
� � P

�4�
� , that character-

izes separability properties independent of any pairing of
subsystems: c�4� vanishes for any state where at least one
subsystem is uncorrelated with all other system compo-
nents. In particular, for GHZ-like states j�GHZi �P
i
�����
�i
p
jiiiii, c�4� yields nonvanishing values, see Table I,

whereas it vanishes for W states, as it is in accord with
observations that in tripartite systemsW states contain only
bipartite correlations [19]. For two-level systems, c�4� can
be used as a measure of the usefulness of a given state for
multiparticle teleportation [20], and, since A is of rank
one, Eq. (4) not only provides a lower bound, but rather the
exact concurrence of arbitrary mixed states.

As a last example, we would like to focus on the
N-partite generalization CN of C3, with pfsig � 4 for all
fsig in Eq. (5), except for p����� � 0. Defined for systems
with an arbitrary number N of subsystems, CN can be
shown [21] to be monotonously decreasing under LOCC
operations, such that it does not only allow to access
separability properties, but also is an entanglement mono-
tone [22]. As already pointed out in [18],CN can—like any
of the concurrences defined in Eq. (2)—be expressed in
terms of all reduced density matrices %i

CN��� � 21�N=2

��������������������������������������������������������
�2N � 2�h�j�i �

X
i

Tr%2
i ;

s
(6)
for biseparable and GHZ-like states. For biseparable states, the
the bipartite (tripartite) concurrence of the remaining entangled����������������������
c���2=4. C4 vanishes for all states where at least one particle is

�4
i�1H i c�4�12 � � c�4�34 � � C4� �

i � j� �4�i 0 2c�3�3 �’
�123�� 0

i � j� �34�i c�� �34����’�12�� c�’�12����� �34�� c�’�12��c�� �34��

GHZi 2
��������������������P
i>j�i�j

q
2
��������������������P
i>j�i�j

q
2
��������������������P
i>j�i�j

q
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where the multi-index i runs over all �2N � 2� subsets of
the N subsystems.

Like C3, CN only vanishes for completely separable
N-partite states. Furthermore, it has the particularly nice
property that CN� � reduces to CN�1�’� for any state j i
that factorizes into a product state on one subsystem and on
the �N � 1�-partite remainder j’i. This allows us to com-
pare the nonclassical correlations inscribed in multipartite
systems of variable size N.

In conclusion, we have seen that a discrete subset of the
continuous family of concurrences defined by Eqs. (2) and
(5), allows for a selective assessment of the separability
properties of mixed multipartite quantum states. Given the
lower bound (4), these quantities can be evaluated effi-
ciently [7,17,18], and thus allows us, e.g., to address im-
portant questions such as the time evolution and the scaling
properties (in terms of the system size) of entanglement in
higher dimensional quantum systems [18]—an objective
which so far could only be accomplished for the simple
2� 2 case [23]. Furthermore, our definition reveals a con-
tinuously parametrized identifier of multipartite entangle-
ment, an observation which still awaits its physical or
statistical interpretation.
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