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Generation of Hyperentangled Photon Pairs
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We experimentally demonstrate the first quantum system entangled in every degree of freedom
(hyperentangled). Using pairs of photons produced in spontaneous parametric down-conversion, we
verify entanglement by observing a Bell-type inequality violation in each degree of freedom: polarization,
spatial mode, and time energy. We also produce and characterize maximally hyperentangled states and
novel states simultaneously exhibiting both quantum and classical correlations. Finally, we report the
tomography of a 2� 2� 3� 3 system (36-dimensional Hilbert space), which we believe is the first
reported photonic entangled system of this size to be so characterized.
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Entanglement, the quintessential quantum mechanical
correlations that can exist between quantum systems, plays
a critical role in many important applications in quantum
information processing, including the revolutionary one-
way quantum computer [1], quantum cryptography [2],
dense coding [3], and teleportation [4]. As a result, the
ability to create, control, and manipulate entanglement has
been a defining experimental goal in recent years. Higher-
order entanglement has been realized in multiparticle [5]
and multidimensional [6–9] systems. Furthermore, two-
component quantum systems can be entangled in every
degree of freedom (DOF), or hyperentangled [10]. These
systems enable the implementation of 100%-efficient com-
plete Bell-state analysis with only linear elements [11] and
techniques for state purification [12]. In addition, hyper-
entanglement can also be interpreted as entanglement be-
tween two higher-dimensional quantum systems, offering
significant advantages in quantum communication proto-
cols (e.g., secure superdense coding [13] and cryptography
[14]).

Photon pairs produced via the nonlinear optical process
of spontaneous parametric down-conversion have many
accessible DOF that can be exploited for the production
of entanglement. This was first demonstrated using polar-
ization [15,16], but the list expanded rapidly to include
momentum (linear [17], orbital [6], and transverse [18]
spatial modes), energy time [19] and time bin [20], simul-
taneous polarization and energy time [21], and recently,
simultaneous polarization and 2-level linear momentum
[22]. In this work, we produce and characterize pairs of
single photons simultaneously entangled in every DOF—
polarization, spatial mode, and energy time. As observed
previously [6], photon pairs from a single nonlinear crystal
are entangled in orbital angular momentum (OAM).
Moreover, polarization entangled states can be created by
coherently pumping two contiguous thin crystals [23],
provided the spatial modes emitted from each crystal are
indistinguishable. Finally, the pump distributes energy to
the daughter photons in many ways, entangling each pair in
energy; equivalently, each pair is coherently emitted over a
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range of times (within the coherence of the continuous
wave pump). We show our two-crystal source can generate
a (2� 2� 3� 3� 2� 2)-dimensional hyperentangled
state [10], approximately

�jHHi � jVVi�|�����������{z�����������}
polarization

� �jrli � �jggi � jlri�|�����������������{z�����������������}
spatial modes

� �jssi � jffi�|��������{z��������}
energy time

:

(1)

Here H (V) represents the horizontal (vertical) photon
polarization; jli, jgi, and jri represent the paraxial spatial
modes (Laguerre-Gauss) carrying �@, 0, and �@ OAM,
respectively [24]; � describes the OAM spatial-mode bal-
ance prescribed by the source [25] and selected via the
mode-matching conditions; and jsi and jfi, respectively,
represent the relative early and late emission times of a pair
of energy anticorrelated photons [19].

The most common maximally entangled states are the 2-
qubit Bell states: �� � �j00i � j11i�=

���
2
p

and �� �
�j01i � j10i�=

���
2
p

, in the logical basis j0i and j1i. By
collecting only the �@ OAM state of the spatial subspace,
the state (1) becomes a tensor product of three Bell states
��poln ���spa ���t-e. As a preliminary test of the hyper-
entanglement, we characterized the polarization and
spatial-mode subspaces by measuring the entanglement
(characterized by tangle T [26]), the mixture (character-
ized by linear entropy SL��� �

4
3 	1� Tr��2�
 [27]), and

the fidelity F��; �t� � �Tr�
�������������������������
�t
p

�
�����
�t
pp
��2 of the measured

state � with the target state �t � j tih tj. We consistently
measured high-quality states with tangles, linear entropies,
and fidelities with �� of T � 0:99�1�, SL � 0:01�1�, and
F � 0:99�1� for polarization; and T � 0:96�1�, SL �
0:03�1�, and F � 0:95�1� for spatial mode, significantly
higher than earlier results [18].

The experiment is illustrated in Fig. 1. A 120 mW
351 nm Ar� laser pumps two contiguous �-barium borate
(BBO) nonlinear crystals with optic axes aligned in per-
pendicular planes [23]. Each 0.6 mm thick crystal is phase
matched to produce type-I degenerate photons at 702 nm
1-1 © 2005 The American Physical Society
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into a cone of 3.0� half-opening angle. The first (second)
crystal produces pairs of horizontally (vertically) polarized
photons, and these two possible down-conversion pro-
cesses are coherent, provided the spatial modes emitted
from each crystal are indistinguishable. With the pump
focused to a waist at the crystals, this constraint can be
satisfied by using thin crystals and ‘‘large’’ beam waists
(large relative to the mismatch in the overlap of the down-
conversion cones from each crystal [23]). However, the
OAM entanglement is maximized by balancing the relative
populations of the low-valued OAM eigenstates [25],
which requires smaller beam waists to image a large area
of the down-conversion cones. Here we compromise by
employing an intermediate waist size (
 90 �m) at the
crystal. Mode-matching lenses are then used to optimize
the coupling of the rapidly diverging down-conversion
modes into single-mode collection fibers.

The measurement process consists of three stages of
local state projection, one for each DOF. At each stage,
the target state is transformed into a state that can be
discriminated from the other states with high accuracy.
Specifically, computer-generated phase holograms [28]
transform the target spatial mode into the pure Gaussian
(or 0-OAM) mode, which is then filtered by the single-
mode fiber [6] [Fig. 1(b)]. After a polarization controller to
compensate for the fiber birefringence, wave plates trans-
form the target polarization state into horizontal, which is
filtered by a polarizer [Fig. 1(d)]. The analysis of the
energy-time state is realized by a Franson-type [19] polar-
ization interferometer without detection postselection [21].
The matched unbalanced interferometers give each photon
a fast jfi and slow jsi route to its detector. Our interfer-
ometers consisted of L
 11 mm quartz birefringent ele-
ments, which longitudinally separated the horizontal and
vertical polarization components by �nquartzL
 100 �m,
more than the single-photon coherence length (�2=��

50 �m with �� � 10 nm from the interference filters)
but much less than the pump-photon coherence length
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FIG. 1. Experimental setup for the creation and analysis of
hyperentangled photons. (a) The photons, produced using adja-
cent nonlinear crystals (BBO), pass through a state filtration
process for each DOF before coincidence detection. The mea-
surement insets show the filtration processes as a transformation
of the target state (dashed box) and a filtering step to discard the
other components of the state (dotted box). (b) Spatial filtration
(spa): hologram (holo) and single-mode fiber (smf). (c) Energy-
time transformation (e-t): thick quartz decoherer (dec) and liquid
crystal (LC). (d) Polarization filtration (poln): quarter-wave
plate (qwp), half-wave plate (hwp), and polarizer (pol).
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(
10 cm). We rely on the photons’ polarization entangle-
ment jHHi � jVVi to thus project onto a two-time state
(jHs;Hsi � ei��1��2�jVf; Vfi), where �1 and �2 are con-
trolled by birefringent elements (liquid crystals and
quarter-wave plates) in the path of each photon [21].
Finally, by analyzing the polarization in the �45� basis,
we erase the distinguishing polarization labels and can
directly measure the coherence between the jssi and jffi
terms, arising from the energy-time entanglement.

To verify quantum mechanical correlations, we tested
every DOF against a Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality [29]. The CHSH inequality places
constraints (S � 2) on the value of the Bell parameter S, a
combination of four two-particle correlation probabilities
using two possible analysis settings for each photon. If
S > 2, no separable quantum system (or local hidden vari-
able theory) can explain the correlations; in this sense, a
Bell inequality acts as an ‘‘entanglement witness’’ [30]. To
measure the strongest violation for the polarization and
spatial-mode DOFs, we determined the optimal measure-
ment settings by first tomographically reconstructing the 2-
qubit subspace of interest; we employ a maximum like-
lihood technique to identify the density matrix most con-
sistent with the data [27].

Table I shows the Bell parameters measured for the
polarization, spatial-mode, and energy-time subspaces,
with various projections in the complementary DOF. We
see that for every subspace, the Bell parameter exceeded
the classical limit of S � 2 by more than 20 standard
deviations (�), verifying the hyperentanglement. For
both the polarization and spatial-mode measurements, we
traced over the energy-time DOF by not projecting in this
subspace. We measured the polarization correlations while
projecting the spatial modes into the orthogonal basis
states (jli; jgi, and jri), as well as the superpositions jhi �
�jli � jri�=

���
2
p

and jvi � �jli � jri�=
���
2
p

). The measured
Bell parameters agreed (within 
2�) with predictions
from tomographic reconstruction and violated the inequal-
ity by more than 30�. In the spatial-mode DOF, the corre-
TABLE I. Bell parameter S showing CHSH-Bell inequality
violations in every degree of freedom. The local realistic limit
(S � 2) is violated by the number of standard deviations shown
in brackets, determined by counting statistics.

Spatial-mode projected subspaces
DOF jggihggj jrlihrlj jlrihlrj jhhihhhj jvvihvvj

��poln 2:76	76�
 2:78	46�
 2:75	44�
 2:81	40�
 2:75	33�

��t�e 2:78	77�
 2:80	40�
 2:80	40�
 2:72	30�
 2:74	29�


Polarization projected subspaces
DOF No polarizers jHHihHHj jVVihVVj

��spa 2:78	78�
 2:80	36�
 2:79	37�

�jggi � jrli 2:33	55�
 2:30	25�
 2:38	30�

�jggi � jlri 2:28	47�
 2:26	20�
 2:31	26�
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lations for the state ��spa were close to maximal (S �
2
���
2
p
� 2:83), also in agreement with predictions from

the measured state density matrix. In addition, we tested
Bell inequalities for nonmaximally entangled states in the
OAM subspace: �jggi � jrli and �jggi � jlri; the mea-
sured Bell parameters in this case were slightly smaller
(5%, maximum) than predictions from tomographic recon-
struction [31], yet still 20� above the classical limit.
Finally, our measured Bell violation for the energy-time
DOF using particular phase settings is in good agreement
with the prediction (S � 2

���
2
p
V) from the measured 2-

photon interference visibility V � 0:985�2�.
The polarization and spatial-mode state was fully char-

acterized via tomography [27]. We performed the 1296
linearly independent state projections required for a full
reconstruction in the �2 � 3� � �2 � 3� Hilbert space con-
sisting of two polarization and three OAM modes for each
photon. The measured state (Fig. 2) overlaps the antici-
pated state [polarization and spatial DOFs of Eq. (1)] with
a fidelity of 0.69(1) for � � 1:88e0:16i� (numerically fit-
ted), and SL � 0:46�1�, suggesting the difference arises
mostly from mixture. Treating the photon pairs as a six-
level two-particle system, we can quantify the entangle-
ment using the negativity N [32]. In this 6 � 6 Hilbert
space, N ranges from 0 (for separable states) to 5 (for
maximally entangled states), and the fitted state above
hasN � 4:44. Our measured partially mixed state hasN �
2:96�4�, indicating strong entanglement. The spatial mode
alone hasN � 1:14�2�, greater than the maximum (N � 1)
FIG. 2 (color online). Measured density matrix (�) and close
pure state [j�pi 
��poln � �jlri � �jggi � jrli� with � �
1:88e0:16i�] of a (2� 2� 3� 3)-dimensional state of 2-photon
polarization and spatial mode [35].
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of any two-qubit system. Thus, our large state possesses 2-
qubit and 2-qutrit entanglement.

We also selected a state [neglecting the jggi component,
Fig. 3(a)] maximally entangled in both polarization and
spatial mode that had F � 0:974�1� with the target ��poln �
FIG. 3 (color online). Measured density matrices (real parts) of
(2� 2� 2� 2)-dimensional states of 2-photon polarization and
(� 1;�1)-qubit OAM [35]. For each state, we list the target
state �t, the fidelity F��; �t� of the measured state � with the
target �t, their negativities and linear entropies, and the tangle
and linear entropy for each subspace. The negativity for two-
qubit states is the square root of the tangle. The magnitudes of all
imaginary elements, not shown, are less than 0.03.
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��spa. By tracing over polarization (spatial mode), we look
at the measured state in the spatial-mode (polarization)
subspaces. The reduced states in both DOFs are pure (SL <
0:04) and highly entangled (T > 0:94).

With this precise source of hyperentanglement, we have
the flexibility to prepare nearly arbitrary polarization states
[33], and to select arbitrary spatial-mode encodings. For
example, we also generated a different maximally en-
tangled state: ��poln ���spa [Fig. 3(b)]. By coupling to
and tracing over the energy-time DOF using quartz decoh-
erers [33], we can add mixture to the polarization subspace,
allowing us to prepare a previously unrealized state that
simultaneously displays classical correlations in polariza-
tion and maximal quantum correlations between spa-
tial modes [Fig. 3(c)]: � � 1

2 �jHHihHHj � jVVihVVj� �
j��spaih�

�
spaj. We were also able to accurately prepare the

state �t �
1
4 Ipoln � j�

�
spaih�

�
spaj, with no polarization cor-

relations at all (i.e., completely mixed or unpolarized),
while still maintaining near maximal entanglement in the
spatial DOF [Fig. 3(d)].

We report the first realization of hyperentanglement of a
pair of single photons. The entanglement in each DOF is
demonstrated by violations of CHSH-Bell inequalities of
greater than 20�. Also, using tomography we fully char-
acterize a 2 � 2 � 3 � 3 state, the largest quantum system
to date. In restricted (2� 2� 2� 2)-dimensional sub-
space, we prepare a range of target states with unprece-
dented fidelities for quantum systems of this size, including
novel states with a controllable degree of correlation in the
polarization subspace. These hyperentangled states enable
100%-efficient Bell-state analysis [11], which is important
for a variety of quantum information protocols [3,13].
Because the spatial-mode and energy-time DOFs are infi-
nite in size, we envision examining even larger subspaces,
encoding higher-dimensional qudits [7,8]. Finally, we note
that the pairwise mechanism of the 	�2� down-conversion
process inherently produces entanglement in photon num-
ber [34].
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