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Self-Organized Pacemakers in a Coupled Reaction-Diffusion-Mechanics System
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Using a computational model of a coupled reaction-diffusion-mechanics system, we find that me-
chanical deformation can induce automatic pacemaking activity. Pacemaking is shown to occur after a
single electrical or mechanical stimulus in an otherwise nonoscillatory medium. We study the mechanisms
underpinning this effect and conditions for its existence. We show that self-organized pacemakers drift
throughout the medium to approach attractors with locations that depend on the size of the medium, and
on the location of the initial stimulus.
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Reaction-diffusion equations describe a wide variety of
nonlinear systems in physics, chemistry, and biology. They
describe nonlinear wave patterns in the Belousov-
Zhabotinsky (BZ) chemical reaction [1], in the processes
of morphogenesis of the mould Dictyostelium discoideum
(Dd) [2], of electrical activity in cardiac tissue [3], and in
many other biological systems. Propagation of nonlinear
waves is usually accompanied by other important pro-
cesses. One of the most fundamental is the mechanical
deformation of the medium. Indeed, the primary physi-
ological function of the electrical waves in the heart is the
initiation of cardiac contraction. Contraction of the heart in
turn affects the process of wave propagation resulting in a
complex global feedback phenomenon known as mecha-
noelectrical feedback, which has been studied in electro-
physiology for well over a century [4]. Nonlinear waves
during Dd morphogenesis induce motion of the cells,
which substantially affects wave dynamics [2]. Waves in
the BZ reaction in gels cause deformation [5], which in
turn affects the spiral wave dynamics [6]. Furthermore, a
‘‘chain reaction’’ of spiral wave births and deaths can result
from an externally controlled deformation of a medium [7].
Although the interplay of mechanical deformations with
the dynamics of reaction-diffusion systems is an important
phenomenon, most studies have separately considered the
mechanical deformation or nonlinear wave propagation in
reaction-diffusion systems.

Recently, we introduced a general framework to study
the effects of mechanical deformation on reaction-
diffusion systems [8]. We described a deformable, excit-
able medium capable of conducting nonlinear waves of
excitation, which initiate contraction. The reaction-
diffusion system was defined using a general curvilinear
coordinate system, with a metric determined using the
equations of continuum mechanics. In turn, deformations
were initiated and controlled by the reaction-diffusion
system. We illustrated this concept using simple reaction-
diffusion models of cardiac excitation that have been suc-
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cessfully applied in electrophysiology [9,10]. However, the
formulation in [8] lacks several important feedback mecha-
nisms, including a description of the stretch-activated
transmembrane currents, which are considered to be the
main physiological basis of mechanoelectrical feedback in
cardiac tissue [4].

This Letter reports a novel phenomenon for coupled
reaction-diffusion-mechanics systems: the formation of
self-organized pacemakers. To this end, we have extended
the electromechanical framework in [8] to include a de-
scription of the stretch-activated currents. We have inves-
tigated the mechanisms underpinning these self-organized
pacemakers, and have studied their dynamical properties,
such as drift patterns and the dependence of drift on the
initial conditions, and medium size. Self-organization of
pacemakers is important to the general theory of reaction-
diffusion systems [11,12] as well as for applications such
as pacemaker activity in cardiac tissue to initiate the nor-
mal heart beat [4].

Electromechanical model.—We start with the three-
variable reaction-diffusion-mechanics model of excitable
tissue introduced in [8]:
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Equations (1) and (2) provide a standard low-
dimensional model of cardiac electrical propagation: u
and v are normalized variables representing the transmem-
brane potential and recovery properties of the tissue, re-
spectively; ��ku�u� a��u� 1� � uv� is the total tran-
smembrane ionic current per unit area [8]. The parameters
are a, which represents the threshold of activation (and is a
key control parameter in the simulations); k, which con-
trols the magnitude of transmembrane current (k � 8 in all
simulations); and ��u�, which sets the time scale of the
recovery process: ��u� � 1 for u < 0:05, and ��u� � 0:1
for u � 0:05. For the parameter values used in this Letter,
Eqs. (1) and (2) describe nonoscillatory cardiac tissue that
supports stable propagation of excitation waves.

The excitable tissue in our model contracts and the
mechanics is modulated by the variable Ta [described by
Eq. (3)], which represents the active stress generated by the
medium. kT governs the rate of tension development (kT �
10 for all simulations).

Following standard continuum mechanics [13], we
use two coordinate systems to define the deforma-
tion. fXMg are material coordinates embedded in the con-
tracting tissue, and fxig are the spatial reference Cartesian
coordinates. The equations of continuum mechanics
provide the relationship between these two coordi-
nate systems �xi�XM��; i.e., they determine the deformed
position of a point xi that was initially located at XM. This
is achieved using the equations of stress equilibrium
[Eq. (4)] that arise from the physical laws of motion
(conservation of linear momentum). In this Letter, we use
a stress tensor of finite elasticity theory, TMN [the second
Piola-Kirchhoff stress tensor in Eq. (5)], which contains
two parts: (i) the active stress components, TaC�1

MN, where
CMN � �@xk=@XM��@xk=@XN� is the right Cauchy-Green
deformation (metric) tensor of the fXMg coordinate system
[14], and (ii) the passive elastic stress components, which
are expressed in terms of the derivatives of a strain energy
function (W) with respect to components of the Green’s
strain tensor, EMN �

1
2 �CMN � �MN�, where �MN is the

unitary tensor. For this study, the strain energy function
was chosen to be the Mooney-Rivlin constitutive law [14],
W � c1�I1 � 3� � c2�I2 � 3�, where I1 and I2 are princi-
pal invariants of CMN , and c1 and c2 are stiffness coeffi-
cients, which together with the parameter kT from Eq. (3),
determine local deformations during contraction (c1 � 2,
c2 � 6 and kT � 10 for all simulations, chosen to give rise
to relative local deformations of approximately 15% fol-
lowing excitation, consistent with contracting cardiac tis-
sue). Because of motion of the material coordinate system,
we used a general curvilinear expression given by Eq. (6)
to evaluate the Laplacian in Eq. (1), with C � det�CMN�,
which provides a diffusive membrane current per unit
undeformed area. Note that Eq. (6) differs from the equiva-
lent expression in [8], for which the current was calculated
per unit deformed area.

The direct influence of contraction on excitation is given
by a stretch-activated current Is, known to be present in
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cardiac tissue [4]. In this study, we have incorporated a
generic description of the stretch-activated currents into
the model using

Is � Gs�
����
C
p
� 1��u� Es�; (7)

whereGs and Es are the maximal conductance and reversal
potential of the stretch-activated channels, respectively.
This type of relation is similar to that used in [15], but
in our model the deformation of the medium is computed
as a part of the mechanics solution procedure, therefore
we use an explicit dependence of the conductance on the
local dilatation (

����
C
p
� 1). Furthermore, since the current

through the stretch-activated channels occurs mainly dur-
ing stretch, we assume that the current in Eq. (7) is present
only if

����
C
p

> 1. The value of the parameter Es in our model
was typically 1, and describes the depolarizing effect of the
current observed experimentally [4,15]. The value of Gs is
one of the main determinants of the effects of deformation
on wave propagation and was varied in our computations.

Numerical integration methods.—The coupled electro-
mechanical model was solved using a hybrid approach that
combines an explicit Euler time integration scheme to
compute the excitation characteristics of the medium,
with nonlinear finite element techniques to determine the
large deformation mechanics of the tissue. The solution
procedure is as follows: after Nmech time integration steps
for Eqs. (1)–(3), the equations governing tissue mechanics
[Eq. (4)] are solved, subject to the active stresses Ta due to
Eq. (3). The solution of Eq. (4) provides updated values of
the metric tensor componentsCMN , which in turn modulate
excitation properties [via Eqs. (6) and (7)] for the subse-
quent Nmech excitation time steps.

The model solution parameters were the following:
Euler computations were performed using a time integra-
tion step of �t � 0:03 (dimensionless time units) and a
space integration step of �x � �y � 0:6 (dimensionless
space units), consistent with previous studies [8]. The
mechanics mesh was defined using up to 15	 15 finite
elements. Each mechanical element contained up to 7	 7
electrical grid points, and the value of Nmech � 3 was used.
Thus, the finite difference mesh was up to 91	 91 grid
points. These parameters were chosen following a solution
convergence study to ensure that the main results of this
Letter (i.e., the onset of pacemakers) were insensitive to
these parameter choices. No-flux boundary conditions
were imposed for Eq. (1), and the boundaries of the me-
dium were fixed in space for Eq. (4). Mechanically, the
fixed boundaries are consistent with an isometric contrac-
tion regime: a standard experimental procedure for muscle
mechanics, during which end points of the tissue are fixed
to maintain constant overall length. Full details of the
mechanical and electrical coupling of the model, and the
numerical (finite element) methods used to solve the equa-
tions of mechanics are given in [8].

Results.—The upper panels of Fig. 1 show the process of
wave propagation after application of a single stimulus at
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the center of the medium, and in the absence of mechanical
activity. We observed that the stimulus initiated a single
wave of excitation [Fig. 1(a)] that vanished following
propagation [Fig. 1(b)]. The spatiotemporal evolution of
this pulse is presented in Fig. 1(c). In the presence of
mechanical activity of the medium, we observed that the
same initial conditions resulted in the onset of a stable
pacemaker at the center of the medium [Figs. 1(d) and
1(e)]. Following a single stimulus, the initial propagating
wave gave rise to subsequent waves that spontaneously
appeared at the center of the medium [Fig. 1(f)]. Thus,
mechanical deformation can initiate self-oscillatory activ-
ity in a reaction-diffusion system. The mechanism of this
phenomenon is explained in Fig. 2(a), which illustrates the
excitation variable u (solid line) and local dilatation
(dashed line) at the center of the medium during the pace-
making activity given in Figs. 1(d)–1(f). We observed
contraction (negative dilatation) following excitation, but
as the wave traveled away from the center, electrical
recovery and localized stretch (positive dilatation) oc-
curred in this region. This central stretch resulted from
contraction of the surrounding parts of the medium and led
to an inward current produced by the stretch-activated
channels Is [Eq. (7)]. This current depolarized the central
tissue resulting in the onset of a subsequent excitation.

The period of the pacemaker induced by the mechanical
deformation was modulated by the parameter values.
Increasing the stretch-activated current Is by increasing
Gs led to a decrease in the pacemaker period [Fig. 2(b)].
On the other hand, decreasing the excitation threshold a
also decreased the period of the pacemaker.

The parameters Gs and Es that modulate the stretch-
activated channels in Eq. (7) were both important for the
FIG. 1. Development of a stable pacemaker due to mechanical
deformation. The upper panels show wave propagation in the
absence of mechanical activity at time 10.17 time units (panel a),
and 16.17 time units (panel b). Panel (c) shows the time-space
plot for the bold vertical line marked in panel (a). The medium
size was 28.8 space units and the total integration time spanning
left-to-right in panel (c) is 100 time units. Panels (d)–(f) show a
similar simulation to that in panels (a)–(c), but including me-
chanical deformation of the medium, with Gs � 0:5, Es � 1,
and a � 0:05. The period of the pacemaker was 11.1 time units.
For the time-space plots [panels (c) and (f)], time runs along the
horizontal axis.
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pacemaking effect we observed. From Eq. (7), one can
expect that the threshold value of the Is current necessary
to initiate new excitations is proportional to�Gs�u


 � Es�
(where u
 is some constant). In order to test this, Fig. 3(a)
illustrates the boundary of the onset of oscillations in the
parametric space for G�1

s , Es. As expected, we see that
G�1
s linearly increases with Es. The relationship between

Gs and a required for pacemaking was more complex
[Fig. 3(b)]. We observed the onset of oscillations only for
a < 0:085. For 0:085 � a < 0:12 (above the dashed line),
we obtained only one extra excitation that failed to propa-
gate through the medium, and for a � 0:12 the propagation
of the first wave also failed.

We found that if a pacemaker was established at any
point other than the center of the medium, then it drifted to
other locations in the medium. We performed computa-
tions by initiating the first pulse at 56 different locations
throughout the medium. Almost all stimuli resulted in
pacemakers that drifted to approach one of four attractors
that were symmetrically located on the center lines across
the medium, and at approximately 1=6 of the medium size
from the boundary, as illustrated in Fig. 4(a). In the cases
where the stimulus was initiated on the diagonals of the
medium, the pacemaker drifted to the central point, where
it became stationary. The attractor locations were not
affected by the size of mechanical elements. A 50% de-
crease in the element size resulted in negligible (less than
5%) changes in the attractor locations. However, we found
that the arrangement of attractor locations depended on the
medium size [Fig. 4(b)]. If the medium size was decreased,
then the peripheral attractors [open circles in Fig. 4(a)]
shifted toward the boundaries of the medium. If the size
was less than 25 space units, the pacemaking activity
settled at the boundary of the medium [defined as shift �
1 in Fig. 4(b)] at the middle of the corresponding side,
similar to Fig. 4(a). For larger sizes, the four peripheral
attractors approached the center of the medium. For media
larger than 34 space units, a single attractor was located at
the center of the medium (shift � 0). This attractor per-
sisted for all larger sizes of the medium for which compu-
tations were performed (up to 54 space units). In the limit
of a very large medium (for which the relative influence of
boundary is negligible), it is reasonable to expect that the
pacemaker will either cease to drift or will drift indefinitely
FIG. 2. (a) The time course of the excitation variable u (solid
line) and local dilatation �

����
C
p
� 1� (dashed line) at center of the

medium for the computation presented in Figs. 1(d)–1(f).
(b) Period of the pacemaker as a function of Gs for a � 0:05
(solid line), a � 0:06 (dashed line), and a � 0:07 (gray line).
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FIG. 3. Values of the parameters (a) G�1
s , Es, and (b) Gs, a,

required for pacemaking oscillations. Symbols in panel (b) de-
note O: oscillations regime; L: single additional local response;
and N: no wave propagation. Other parameter values were the
same as those for Fig. 1.
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(i.e., independent of a specific location). However, we were
not able to approach this limit, nor find a substantial
decrease in drift velocity towards the center for medium
sizes larger than 34 space units. We found that pacemaker
drift was due to a complex interaction between the depola-
rizing stretch-activated current and the recovery dynamics
of the medium. For example, if the contraction was sub-
stantially delayed with respect to the excitation (more than
5 time units), then the pacemaker drift was always directed
toward the boundary of the medium. We also found that the
magnitude of the stretch-activated current at the point of
initial stimulation was greater for a smaller medium com-
pared to that for a larger medium. However, it remains to
be determined how these observations can be used to
robustly predict drift direction.

Finally, note that we were also able to initiate pace-
making activity using a single mechanical stimulus (i.e.,
a rapid local stretch) instead of electrical stimulation.

Discussion.—We found that mechanical deformation
can induce pacemakers in excitable tissue, and that this
effect is due to the depolarization action of the stretch-
activated current. Although we use very general descrip-
tions of the medium’s excitation-mechanics properties and
the dynamics of stretch-activated channels, we propose
FIG. 4. Pacemaker drift. (a) Depending on the site of initiation,
pacemakers drifted to one of five attractors symmetrically lo-
cated throughout the medium—one central attractor (large filled
circle) and four peripheral attractors (open circles).
Computations were carried out using a medium of size 28:8	
28:8 space units; the size of each mechanical element was 7	 7
electrical grid points. The arrows show the pacemaker trajecto-
ries, and filled black circles mark the initial sites of stimula-
tion. (b) Relative shift—defined as the location of the peripheral
attractors as a proportion of the distance from the center to the
boundary of the medium—plotted against medium size.
Computations were performed using Gs � 0:5, Es � 1, and
a � 0:05.
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that this effect could be important in cardiac tissue.
Indeed, as shown in detailed biophysical models of cardiac
tissue [15], and in experimental studies [4], stretch-
activated channels can depolarize cardiac tissue in a man-
ner similar to that in our computations. The induction of a
pacemaker depends on the relation of the depolarizing
effect of Is with the excitation properties of cardiac cells.
These properties differ substantially throughout the heart
[4], and many types of cardiac cells show self-oscillating
behavior, even in the absence of applied stretch. Therefore,
given the wide variety of properties of cardiac cells and the
depolarizing action of the stretch-activated channels in the
heart, we propose that the effects of induction of pace-
making activity can exist for some types of cardiac cells,
particularly those that exhibit self-oscillation dynamics.

One of limitations of our study is that our formulation
neglects the fibrous anisotropy of cardiac tissue, which is
important both for the electrical and the mechanical prop-
erties of the heart. We chose not to consider these effects,
since the main aim of this study was to investigate the basic
effects of deformation on a general reaction-diffusion sys-
tem. The influence of cardiac anisotropy is likely to add
additional effects, and will be addressed in future studies.
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