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Scaling of Polymers in Aligned Rods
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We study the behavior of self-avoiding polymers in a background of infinitely long vertically aligned
rods that are either frozen in random positions or free to move horizontally. We find that in both cases the
polymer chains are highly elongated, with vertical and horizontal size exponents that differ by a factor
of 3. Though these results are different than previous predictions, our results are confirmed by detailed
computer simulations.
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In this Letter we analyze the statistics of a flexible
polymer molecule in a background of vertical rods that
are either free to move (annealed), or fixed in location
(quenched). We argue that this would be an interesting
system to investigate experimentally, perhaps being related
to liquid-crystal polymer mixtures. One can solubilize rod-
like particles such as nanotubes [1], virus particles, boeh-
mite rods, and cellulose nanocrystals, and rod-polymer
mixtures have been studied experimentally and theoreti-
cally in the context of demixing and liquid crystalline
phase transitions [2–8]. Furthermore, it is now possible
to fabricate arrays of vertical nanotubes on a substrate [9]
which allows for the possibility of observing the quenched
scaling behavior that we have predicted.

This work has overlap with many other problems of
interest. For example, vortices in superconductors with
columnar disorder have been extensively studied [10] and
are related to the current polymer problem, a major differ-
ence being that the polymer (or vortex) is stretched and
threaded the entire vertical dimension having a line ten-
sion, meaning that it is appropriate to use directed poly-
mers in this situation [11]. This apparently leads to
completely different scaling behavior [12].

The statistics of a flexible polymer molecule in a back-
ground of vertical rods has been considered previously in a
dynamical context [13] and for periodic backgrounds [14],
but surprisingly, the results for the problem considered
here do not appear to have been given.

We use a three-dimensional cubic lattice model to study
this problem, where the rods randomly occupy vertical
lines, and the chain avoids itself and the rods. This is
related to the problem of a self-avoiding walk (SAW)
that also is excluded from point defects. In that case, an
elegant argument of Cates and Ball [15] cleared up a
decade of controversy [16] by showing that the quenched
version of this problem, where defects are frozen, gives
exactly the same statistics for the SAW as the annealed
version, where the defects are also mobile. They argued
that a frozen background of uncorrelated obstacles on an
infinite lattice could be subdivided into very large regions.
The statistics of obstacles in each region are independent of
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each other. Therefore the statistics of the polymer chain
can be obtained by doing an average over all these regions.
The statistical weight given to each region gives precisely
the same result as an annealed average. Their argument
trivially extends to the case we consider here. For a finite
volume system, this approach [15] also reconciles the
quenched (replica) [17] and annealed predictions. It should
be emphasized that if one end of the chain is tethered to a
fixed location, then this argument is no longer valid and the
conformations of chains will be very different [18].

From the above paragraph, we conclude that for an
infinite sized lattice, the problem of frozen rods gives
identical polymer statistics to the case where the rods are
mobile. Below we analyze how finite size lattices alter the
above conclusion. This is important to do, because we find
those effects are large and in experimental systems with
confined geometries can easily dominate the behavior. But
first we analyze the annealed problem.

Denote the probability distribution of the SAW with
coordinates r1; r2; . . . ; rN , as PSAWfrig. When it is placed
in a random potential V�r� at temperature T, the annealed
average probability distribution becomes

PSAWfrig / he��1=T��jV�rj�iV: (1)

The average depends on the statistics of V. First we
review the case of a completely uncorrelated V [15,19],
in which case the average becomes an on-site attractive
term between different monomers. However, because the
SAW excludes all configurations where two monomers sit
on the same site, this cannot alter the probability distribu-
tion. Therefore an uncorrelated random potential makes no
difference to the statistics of an SAW. This result has been
confirmed by simulations [20].

Now we turn to the case of columnar disorder. Here the
average in Eq. (1) leads to an attractive interaction between
all monomers that have the same x-y coordinates, regard-
less of their vertical separation. In this case, we expect
different scaling behavior than we would observe from an
SAW. Intuitively, the chain should contract in the x-y
plane. We now analyze the annealed statistical mechanics
of this problem using a scaling argument.
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FIG. 1 (color online). Mean monomer separation squared as a
function of arclength defined in Eq. (4), both the total (upper
curve) and the x-y projection (lower curve) for an SAW of
4096 steps and vertical rods with � � 0:32 with mobile rods.
The slope of the best fit line for the upper graph is 2	 0:974.
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A dilute gas of rods of density (per unit area) of � and at
temperature T gives rise to a (two-dimensional) pressure
p � �T. An SAW of N steps placed in a gas of these rods
will raise the free energy of the rods by excluding rods
from the vicinity of the SAW. This is due to the pressure
exerted by the rods, which means that the free energy is
raised by pAwhere A is the cross-sectional area of the rods
in the x-y plane. Therefore the SAW has forces acting on it
to decrease A. Working in opposition to this is the entropy
loss of a polymer chain confined to a cylinder of radius Rxy
which is �N=Nxy [21], where Nxy is the number of mono-
mers corresponding to an SAW of dimension Rxy � N�

xy,
where � � :59 is the excluded volume exponent in three
dimensions. (This confinement requires fixing the orienta-
tion of a monomer, one in every Nxy steps lowering the
entropy.) Minimizing the pressure and tube confinement
terms with respect to Rxy gives

Rxy � N
1=�2�1=�� � N0:27: (2)

Note that the exponent 0.27 is much less than in the pure
SAW case—the pure SAW problem is isotropic and so � is
as well. This shows that the scaling of the polymer chain in
this situation differs greatly from a pure SAW. To obtain
scaling in the vertical direction Rz, we note that there are
‘‘blobs’’ of size Rxy stacked vertically on top of each other.
Therefore

Rz � RxyN=Nxy � Rxy�A� ��Rxy�
3 � N0:81; (3)

which is substantially larger than the � for a pure SAW, and
thrice the x-y exponent, leading to highly elongated chains.
Note the overall radius of gyration scales as Rz.

The chain density projected onto the x-y plane grows
algebraically with N. Therefore for large N we expect
complete exclusion of rods in this region, which is consis-
tent with our initial assumption that this was the case. In
addition, because monomers in far away blobs are uncor-
related, and the number of blobs grows with N, single
configurations all have very close projected x-y densities
which will differ from each other only by an inverse power
of N. This self-averaging property implies that we are also
justified in regarding the polymer as being in an external
potential, induced by the rods, and then minimizing the
free energy to find the scale of this potential. Therefore we
expect our scaling argument to work very well for large N.

As argued above, this is identical to the scaling expected
in the case of a frozen background for a system of infinite
size. But for finite sizes, quenched systems are harder to
treat analytically and so we resort to simulations, both to
analyze this case and to verify our above predictions.

Single chains of length 32 to 4096 were simulated on a
cubic lattice with different densities of vertical rods, all
with hard cores. First we allowed both rods and chains to
move according to rules that satisfied detailed balance. The
polymers were moved according to reptation dynamics
[22], and the rods performed long range moves between
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randomly selected positions also satisfying detailed bal-
ance. We checked that our program did indeed give a
reasonable excluded volume exponent in the case of no
rods, � � 0:59 and performed a variety of other checks.

We then analyzed the statistics of our longest chain and
highest rod density, N � 4096 and � � 0:32. We plot the
mean monomer separation squared as a function of arc-
length

hr2�s�i �
X

i<j

�j�i;s
1

N � s
hjri � rjj2i (4)

and the analogous quantity projected in the x-y plane,
hr2
?�s�i. These two quantities are shown in Fig. 1, the upper

and the lower curve being hr2�s�i and hr2
?�s�i, respectively.

The best fit slope to hr2�s�i is 2	 0:974. The scaling theory
predicts a fractal dimension of 1, which corresponds to a
slope of 2 on this plot. hr2

?�s�i has a large plateau indicating
an infinite fractal dimension, consistent with our scaling
analysis of chains in a tubelike conformation.

Next we analyzed different chain lengths and rod den-
sities. The results are shown in Fig. 2. The 	’s with the
upper fitted line going through them represent a fit of the
exponent for chains of length 128 to 4096 when the occu-
pation fraction of rods is � � 0:32. The fit gives an ex-
ponent of 0.82 which compares well with the predicted
value 0.81 given in Eq. (3). The *’s and �’s are the same
data for filling fractions of 0.16 and 0.08, respectively.

At all filling fractions there is a crossover from small
chain lengths, which show the usual self-avoiding behav-
ior, to the elongated regime studied here. From the figure it
is clear that for small chain lengths the radius of gyration
becomes independent of the rod filling fraction as ex-
pected. It is also apparent from the figure that this cross-
over chain length decreases as rod filling increases, which
is in agreement with our theoretical interpretation of the
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FIG. 2 (color online). Radius of gyration squared versus chain
length on a log-log plot for an SAW in annealed vertical rods.
The best fit line is 2	 0:82 for the points at the highest rod
filling fractions (0.32). The �’s show the radius of gyration in
the x-y plane for the same conditions. The *’s and �’s are the
same data for filling fractions of 0.16 and 0.08, respectively.
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data, which predicts this crossover chain length Nc scales
as Nc � ��2�. The radius of gyration in x-y plane (‘‘�’’
symbols) has a straight line fit of 0.23, but because of its
small slope, it is unlikely to have reached asymptotia.
Nonetheless, it is not too far from the predicted value of
0.27.

Now we turn to the results found when the rods are
frozen to random positions (Fig. 3). In this case we did
not go higher than a rod filling fraction 0.16 because we
wanted to stay far away from the percolation transition and
the breakdown of ergodicity associated with it. The lattice
size was 128	 128 in the x-y direction. The chains were
averaged over a large number of steps. Before averaging, a
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FIG. 3 (color online). Radius of gyration squared versus chain
length on a log-log plot for an SAW in quenched vertical rods.
The 	 and square symbols denote a rod filling fraction of 0.16
and 0.08, respectively. The best fit line is 2	 1:01 for the points
at filling fractions of 0.16. The �’s and *’s show the radius of
gyration in the x-y plane for the same conditions, filling fraction
of 0.16 and 0.08, respectively.
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chain was equilibrated for 1:6	 108 steps and averaged
over 1:28	 108 steps. We then averaged the results over
128 realizations of the quenched rods. The radius of gyra-
tion squared is plotted as a function of the number of
monomers. The 	’s and the �’s denote a rod filling
fraction of 0.16 and 0.08, respectively. The slope of the
line going through the 0.16 filling fraction data gives Rg �
N1:01, which is higher than the annealed case. On the other
hand, the radius of gyration in the x-y plane levels off as
shown by the two lower curves. The�’s and the *’s are for
a rod filling fraction of 0.16 and 0.08, respectively. Here, in
contrast to the annealed case—Fig. 2 —a leveling off in the
curves is apparent.

The higher slope of Rg�N� for quenched as opposed to
annealed disorder can be understood as follows. As dis-
cussed above, for large enough lattices one expects the
quenched average to equal the annealed one. The polymer
migrates around the lattice and finds rare locations where it
will spend most of its time. In these locations there will be
a low rod density, and the radius of the depleted region
scales as in Eq. (2). As the chain length grows, this implies
that these regions must become successively rarer because
the size of these holes must grow in order to accommodate
the chain. On the other hand, if the lattice size is finite, then
the strength of the most attractive region is now bounded
and cannot grow with N, hence the leveling off of the
horizontal radius of gyration seen in Fig. 3. A polymer
chain in a fixed tube has an overall radius of gyration Rg /
N [21] in good agreement with our findings.

To confirm this explanation, we ran the simulation for
chains of length 4096 for different horizontal system sizes,
16	 16 up to 128	 128. The horizontal radius of gyration
for different lattice sizes is plotted in Fig. 4 as a function of
inverse system size. The point at zero represents the an-
nealed case which should be the same as the infinite lattice.
As the system width decreases, the horizontal radius of
gyration increases indicating that the polymer is less
tightly bound to rod-depleted regions.

For many chain systems the rods will induce an attrac-
tive interaction between different chains. The annealed
case is simplest to understand. When two chains bind,
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FIG. 4 (color online). Horizontal radius of gyration squared
versus horizontal system size. The horizontal axis is 100 times
the inverse width.
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they will stack on top of each other but should not inter-
penetrate as this strongly raises the free energy. From the
above scaling argument, Eq. (2), the free energy of two
chains binding should scale as the horizontal area occupied
by a chain R2

xy � N
2=�2�1=�� � N0:54. Therefore as polymer

concentration is increased from zero, one expects that there
will be a transition between a gas phase of isolated chains
and a phase of chains stacked on top of each other.
Eventually it will reach another regime where one needs
to consider the finite extent of rods in the vertical direction.
As the concentration is increased, at some point different
groups of stacked chains will want to coalesce. At this
point the system will demix into rod-rich and polymer-rich
regions. The exact nature of the phase diagram is probably
quite complex and requires a detailed understanding of the
behavior of semidilute polymer solutions in pores [21,23],
which itself is quite delicate.

This is also hard to simulate quantitatively (even in the
annealed case) because the center of mass diffusion of
polymers is very slow. However, it was observed that in
the pillar regime, two chains that finally managed to diffuse
into the same tube stayed bound to each other.

The results found here differ strongly from those found
for a model for an SAW in the presence of a solution of
vertically aligned short rods [24] where their SAW’s were
of order 100 units but the rods were only one or two lattice
spacings. In that case, the authors found that the polymers
went into disklike configurations instead of the rodlike
ones found here. Here it is worthwhile examining the
case of rods of length L and chains whose vertical extent
is much larger. In this case Eq. (1) implies an attractive
potential between monomers with the same x-y coordi-
nates whose vertical separation is less than L. At separa-
tions larger than L we expect that chain segments will no
longer be stacked in the same tube because of the absence
of attraction at this length scale. This, according to Eq. (3),
corresponds to a crossover chain length ofNc � L�2�1=��=3.
Beyond this separation, different monomers become un-
bound and we expect that in the horizontal direction seg-
ments execute a random walk. Therefore for large
N 
 Nc, Rxy�L1=3�N=Nc�

1=2�L1=3L��1�1=�2���=3N1=2�

L�1=�6��N1=2. Therefore we expect a slow drift of the
SAW in the vertical direction that decreases with increas-
ing L. Although the drift in the x-y plane is typically slow,
at sufficiently long chain lengths, hairpin configurations
will start to appear allowing the chain to double back. But
the free energy penalty for such hairpins is large �1=3

3 L,
where �3 is the three-dimensional number density of rods
[25]. Therefore hairpins are important only for chains that
are exponentially long in the rod length.

In conclusion, we have shown that a polymer in the
presence of either mobile or frozen vertical rods forms
tubelike vertical conformations where the tube diameter
and tube length scale as in Eqs. (2) and (3). It should be
possible to observe this unusual behavior experimentally.
25780
One possible system for the case of frozen rods would be in
forests of vertical nanotubes [9] suitably coated to make
them repulsive to polymer chains [1]. These results are also
relevant to the more complicated case of polymer-rod
mixtures, which are usually analyzed assuming no change
in polymer statistics due to the presence of rods.
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