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Universal Conductance and Conductivity at Critical Points in Integer Quantum Hall Systems
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The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are
calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size,
both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band,
0.60 = 0.02 ¢2/h and 0.58 = 0.03¢2/h, respectively. In the second-lowest Landau band, a critical
conductance 0.61 * 0.03e?/h is obtained which indeed supports the notion of universality. However,
these numbers are significantly at variance with the hitherto commonly believed value 1/2¢2/h. We argue
that this difference is due to the multifractal structure of critical wave functions, a property that should
generically show up in the conductance at quantum critical points.
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The transitions between quantized Hall plateaus are
generally viewed as a manifestation of continuous 7 = 0
quantum phase transitions. They emerge in the presence of
a strong magnetic field in disordered two-dimensional
electron or hole gases. According to renormalization group
considerations, some properties of the quantum phase
transitions should be universal, i.e., independent of micro-
scopic details of the system. For instance, this is supposed
for the critical exponent that controls the divergence of the
localization length £(E) = &y|E — E.|~* near the critical
energies E., a behavior which has been corroborated by
experimental [1,2] and numerical [3—5] studies. In addi-
tion, it has been suggested that the impurity averaged
elements of the conductivity tensor act as coupling con-
stants in an appropriate field theory [6] where all the
transitions belong to the same universality class [7] with
universal values of the critical dissipative and Hall con-
ductivities. It has been proposed [8,9] that their values
o, = (n—1/2)e*/h and o, = 1/2¢*/h are simply re-
lated at the respective nth transition.

Away from the critical points, the Hall conductivity is
exactly quantized due to topological reasons. Thus, in the
presence of electron-hole symmetry, the above formula for
0, is evident at the transition points [10]. Support for the
existence of a universal o, comes from both experiments
[11,12] and numerical calculations. Amongst the latter, a
critical conductivity o¢, = 0.54e¢?/h was found for the
lowest Landau band using white noise disorder potentials
[13]. A similar diagonalization study [10] yielded o¢, =
(0.55 = 0.05)e?/h for various correlated random poten-
tials, a result considered by the authors to be consistent
with the prediction [8] o<, = 1/2¢?/h. However, the criti-
cal diagonal conductivity deduced from a Thouless number
study [14] exhibited a strong dependence on the range of
the scatterers. Moreover, calculations of the two-terminal
conductance of square systems produced a significantly
larger value g, = (0.58 * 0.03)e?/h [15] and showed con-
siderable fluctuations exhibiting a broad distribution be-
tween zero and e?/h [16]. Here g. = lim; ., 5 ; g5(L)/N
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is the disorder averaged critical conductance of N realiza-
tions. This value was derived from a finite-size scaling
study of the transfer-matrix results calculated within a
Chalker-Coddington (CC) network model [3]. In a recent
work, this outcome has been confirmed with g. = (0.57 *
0.02)e%/h [17]. On the other hand, similar transfer-matrix
calculations within a tight-binding (TB) lattice model with
spatially uncorrelated disorder potentials yielded g, =
(0.506 = 0.01)e?/h [18]; hence, the asserted universality
cannot be taken for granted. Even if it were possible to
reconcile the contradicting results, the hitherto unknown
relation between the two-terminal conductance and the
conductivity, the latter calculated, for instance, from the
Kubo formula for systems without contacts and leads
would still inhibit us drawing final conclusions about the
validity of the proposed universal value of the critical
dissipative conductivity o<, = 1/2¢>/h [8].

Our work is aimed at resolving this issue by making
available the missing links and therewith provide evidence
for an equality of conductivity and conductance at the
critical point in the lowest Landau band. We find, within
the uncertainty of our calculations, similar values 0.58¢%/h
and 0.6¢2/h, respectively. These values are, however, sig-
nificantly larger than the previously proposed and well
accepted o<, = 1/2¢?/h. The origin of this discrepancy
is suggested to arise from the multifractal correlations of
the critical eigenstate amplitudes, which were presumably
not fully taken into account previously. We also present the
critical conductance distribution for the second Landau
band, which agrees with the one from the lowest. The
scaling of the ensemble averaged g. yields (0.61 =
0.03)e?/h, a result that supplies further evidence for the
existence of a universal conductance.

We first show that, for noninteracting electrons moving
in a quenched disorder potential and a perpendicular mag-
netic field described by a tight-binding lattice model, the
following relation holds:

8c(L) = g.(00) — go(Loy/LY, (1)
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if the size of the square systems is L > L,. We find in the
lowest Landau band a critical conductance g.(o0) =
(0.60 + 0.02)e?/h, with y = 0.4 = 0.02. Such a relation
has been suggested previously [19], where the least irrele-
vant scaling exponent y was proposed to equal the expo-
nent of the critical eigenfunction correlations [13]. Then
we demonstrate that the Kubo conductivity for very long
strips of width M > M, obeys a similar power law

O-)ch(M) = O-)ch(oo) - O-O(MO/M)yI) (2)

with ¢, (00) = (0.58 = 0.02)e?/h. The irrelevant scaling
exponent y; is 0.38 = 0.03. Our value of the critical con-
ductivity is in good agreement with the two-terminal con-
ductance but is significantly larger than predicted previ-
ously [8].

The movement of noninteracting charge carriers in a
disordered two-dimensional system in the presence of a
perpendicular magnetic field B = ¢n/(ea”) is described
by a tight-binding model with lattice constant a, and
¢/(27) is the number of flux quanta per plaquette,

xyt+ta®~x

g_[/v = wayc)tycxy + C‘r Cyy + CIy—any
Xy

+ Zexp(l.(,bY)CI_;.anyy + exp(_i(l)y)clfaycxy‘
xy

3)

The distribution of spatially Gaussian correlated on-site
disorder potentials w,, with zero mean has been generated
as described in Ref. [20] from uncorrelated random num-
bers evenly distributed between [—W/V, W/V]. Here W is
the disorder strength in units of the transfer term V, and
(Waywyry) ~ exp(—[(x = x')* + (y = ¥)°]/(2«%)) defines
the potential’s correlation length l,, = \/§K, which was
varied in the range 0 < k < I, where Iz = a/+/@ is the
magnetic length.

In contrast to the one-band model [10,13] or the network
model [15,17], the energetic positions of the transition
points are usually not known a priori in the TB model.
They depend on disorder strength, correlation length, and
magnetic field. Therefore, careful extensive calculations
had to be carried out to precisely detect the critical points.
We used various methods such as calculations of the
energy and size dependence of level statistics [20], local-
ization length [21], and Hall conductivity to find the exact
critical energy. The first quantity was obtained by direct
diagonalization, whereas the latter two were calculated by
means of a recursive Green function technique [22]. The
two-terminal conductance of a L X L sample with two
semi-infinite ideal leads attached to opposite sides and
periodic boundary conditions applied in the transverse
direction was calculated via g = Trrfr, where ¢ is the
transmission matrix. For a given disorder realization the
conductance was numerically evaluated using a well
known algorithm [23]. Ensembles of at least N = 10°
realizations were used (N > 10* in the case of L/a =
512) to determine the conductance distribution and the

corresponding mean critical conductance g.(L). The criti-
cal conductivity was obtained within linear response the-
ory using a recursive Green function method [22].

The mean critical conductance g. depends on the sys-
tem’s size L, the disorder strength W, and the correlation
length [, = V2K of the spatially correlated disorder poten-
tials. In order to detect the genuine size dependence and to
be able to correlate our results with those obtained in the
presence of only one Landau band [10,13,15,17], one has
to confine the parameter range to the situation where the
width of the disorder broadened Landau bands I'(W, «) is
small compared to their energy separation zw,.. Stronger
disorder enhances those matrix elements that couple neigh-
boring Landau bands, giving rise to an increasing g, due to
extra scattering events into the next band, and, eventually,
shifts the critical states to higher energy until they disap-
pear. This levitation of the current carrying states was
shown to depend essentially on the correlation length
[21]. The size dependence of the mean conductance was
calculated for various disorder strengths W and correlation
parameters x/a = 0.3, 1.0, and 1.5. For disorder potentials
with k/a = 1.0, which corresponds to a correlation length
of the order of the magnetic length (/, /1y = 1.2533), the
rescaled mean conductances are shown in Fig. 1 for system
sizes 24 = L/a =512 and disorder strength 0.125 <
W/V =0.7 and W/V = 6.0. In addition, the average
over 1610 realizations for systems of size L = 1024 and
W = 0.5 is also included. The inset shows the original data
for L = 40a. The best fit, leading to a mean critical con-
ductance g.(c0) = (0.60 = 0.02)e?/h and an irrelevant
scaling exponent y = 0.4 = 0.02, is also shown in the inset
in Fig. 1 (solid line). Our mean conductance is in accor-
dance with the results reported for the network model
[15,17].
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FIG. 1 (color online). The relative deviation of the mean
critical conductance g.(L) from g.(o0) vs rescaled inverse sys-
tem size L for a disorder potential with correlation «/a = 1.0,
disorder strengths W/V = 0.125 (&), 0.25 (O), 0.5 (A), 0.7 (<),
6.0 (V), and B = 1/(8a*)(h/e). The best fit gives g.(o0) =
0.6 £0.02 and a slope y = 0.4. The inset shows the unscaled
data for L/a > 40.
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The rescaling of the data according to g.(0) — g.(L) o
(£(W)/L) is, in principle, possible only for small disorder
strength. For stronger disorder (1.0 = W/V = 5.0), the
true scaling regime cannot be reached for system sizes
L/a <192, because Landau band mixing, which is ob-
vious from the strong overlap seen in the density of states
0, causes scattering into the critical states in higher Landau
bands. This disorder induced Landau band coupling may
be the reason for the differing result g. = (0.506 =
0.01)e?/h of Ref. [18]. Increasing the disorder strength
further, one reaches the situation where critical states in
higher Landau bands get annihilated by their correspond-
ing anti-Chern states [20]. For W/V = 6.0, when only the
critical state of the lowest Landau band survives, scattering
into higher conducting states is not possible so that the
conductance data again show scaling and match up with
those obtained for small disorder. A similar behavior is
observed for weak correlated disorder potentials with
k/a = 0.3, where [, = 0.424a is less than half the mag-
netic length. In this case, we found g .(c0) = 0.59 = 0.03
and y = 0.42 = 0.03 from the rescaled data (not shown).

Having established the critical conductance in the lowest
Landau band, we turn now to our results obtained from the
investigation of the critical Kubo conductivity for disorder
potentials with k/a = 0.3. In Fig. 2, the dependence of o<,
on the width of the system is shown in the range 40 =
M/a < 512. We find in the large size limit o<, = (0.58 =
0.03)e?/h, which is significantly larger than proposed
previously. The reason for a critical conductance larger
than 0.5¢2 /h and, therefore, for the discrepancy with the
suggested behavior involving quantum percolation [8,9,24]
may be associated with the multifractality of the critical
quantum Hall eigenstates [25—28], a property that was not
fully appreciated at that time. The diffusion coefficient D,
determining the conductivity o,, = e?@D, is essentially
influenced by the multifractal correlations of the wave
function amplitudes [13,28-30]. Fal’ko and Efetov have
shown [31,32] that, for length scales shorter that the local-
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FIG. 2 (color online). The critical longitudinal conductivity vs
inverse system width M for a correlated disorder potential with
W/V =0.5, k/a=0.3, and magnetic flux density B =
1/(8a®)(h/e). The fit to Eq. (2) gives o<, (0) = (0.58 =
0.02)e?/h and y, = 0.38 = 0.03.

ization length, these correlations are also present away
from the Anderson transition. Using a special version of
the supersymmetric o model, they provided a formula
relating the diffusion coefficient to the generalized multi-
fractal dimensions d(g),

q
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This relation for unitary symmetry was obtained in the
leading order in 1/(27@Dh) and should hold for g =
2meDh. We assume Eq. (4) to be exact near the quantum
Hall critical point for electronic states with localization
length larger than the system size [32]. Taking ¢ = 1, we
find very good agreement with our numerical results,
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using the information dimension d(1) = a(1) = 1.739 =
0.002 derived [33] from the precise parabolic f(a(g))
singularity strength distribution. Over the years, convinc-
ing numerical evidence for a universal f(a(q)) =
2 — (alg) — ap)?/[4(ay — 2)] has been accumulated for
different quantum Hall models [26,27,33,34]. Within error
bars, the whole distribution appears to be independent of
disorder strength, potential correlation length, and mag-
netic field. It is determined only by a single value o =
2.262 * 0.003 [33]. Therefore, also d(1) must be universal
and so should the critical conductivity, if Eq. (5) was exact.

We also found the multifractal properties of the wave
functions to be independent of the Landau band index for
correlated disorder in agreement with previous investiga-
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FIG. 3 (color online). The critical conductance distribution
functions P(In(g$)) from the lowest [O, L/a = 192, W/V =
6.0, k/a = 1.0, B =1/(8a*)(h/e)] and the second-lowest [O,
L/a=512, W/V=0.5, k/a=15 B=1/(32a%*(h/e)]
Landau band (LB). The inset shows the relative deviation of
the mean critical conductance g.(L) for the second LB vs
rescaled inverse system size L for a disorder potential with
correlation parameter k/a = 1.5 and disorder strengths W/V =
0.125 (+), 0.18 (O), 0.25 (V), and 0.5 (J). The best fit gives
g.(00) = (0.61 + 0.03)e?/h and a slope y = 0.56 * 0.05.
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tions [35]. Therefore, to check the universality of Eq. (5),
we calculated the critical conductance in the second
Landau band within the same model but for weaker mag-
netic field B = 1/(32a?)(h/e) and stronger disorder corre-
lations «/a = 1.5 (I,/lz = 0.94). We found g.(o0) =
(0.61 = 0.03)e%/h (see inset in Fig. 3) from the scaling
of the mean critical two-terminal conductance, which is in
good agreement with our results for the lowest Landau
band. The critical conductance distribution functions
P(g¢(L)) for the first and second Landau bands of our
TB model (shown in Fig. 3) are almost identical and look
the same as the one reported for the CC model [36]. Con-
ductance values larger than e?/h reflect the fact that more
than one transmission channel is effective, due to the two-
dimensional contacts. This is contrary to investigations of
the critical point-contact conductance [37,38], which show
a flat symmetrical distribution between zero and e?/h and,
therefore, a mean conductance g, = 0.5¢%/h.

A universal critical conductivity o<, ~ 0.6¢*/h should
be easily observable in experiments on Corbino disks in the
low temperature limit. Here the disagreement with the
value 1/2¢?/h should be clearly discernible and, for the
first time, reveals the multifractality of the critical eigen-
states in a transport measurement. As a further test of the
suggested general influence of the eigenfunction correla-
tions on the critical conductance, we investigated also a
two-dimensional disordered system with spin-orbit inter-
actions. Using the Ando model, we obtained from trans-
fer-matrix calculations a critical conductance gf =
(1.43 = 0.05)e?/h and, via direct diagonalization and a
multifractal analysis of the critical eigenfunctions, an in-
formation dimension d*(1) = 1.89. We find again that both
quantities are perfectly related by a symplectic version of
Eq. (4) [32].

In conclusion, we have shown that, in the critical quan-
tum Hall regime, both the averaged conductance of square
samples and the conductivity of very long strips converge
to the same universal value =~ 0.6 /A in the limit of large
system size. This value depends neither on the considered
disorder realizations nor on the Landau level index, and it
is consistent with theoretical predictions that take into
account multifractal eigenstate correlations at quantum
critical points.
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