
PRL 95, 256603 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005
Spin Polarization Dependence of Carrier Effective Mass in Semiconductor Structures:
Spintronic Effective Mass
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We introduce the concept of a spintronic effective mass for spin-polarized carriers in semiconductor
structures, which arises from the strong spin-polarization dependence of the renormalized effective mass
in an interacting spin-polarized electron system. The majority-spin many-body effective mass renormal-
ization differs by more than a factor of 2 at rs � 5 between the unpolarized and the fully polarized two-
dimensional system, whereas the polarization dependence (�15%) is more modest in three dimensions
around metallic densities (rs � 5). The spin-polarization dependence of the carrier effective mass is of
significance in various spintronic applications.
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FIG. 1. Feynman diagram for self-energy: Solid lines denote
the free electron Green’s function and the wiggly lines the bare
Coulomb interaction. At each vertex there is a conserved spin
index that has to be explicitly accounted for in calculating the
spin-polarization dependent self-energy.
Spintronics [1] involves extensive manipulation of spin-
polarized carriers in semiconductors. We show in this
Letter that such a spin-polarized semiconductor carrier
system would have a new kind of carrier effective mass,
the ‘‘spintronic effective mass’’ associated with it. This
spintronic effective mass will depend crucially on both
carrier density and carrier spin polarization.

Recent experimental measurements of [2–6] of various
Fermi liquid parameters, such as the effective mass and the
spin susceptibility, in two-dimensional (2D) carrier (both
electron and hole) systems confined in semiconductor
structures have vigorously renewed interest in one of the
oldest problems [7,8] of quantum many-body theory,
namely, the density dependence of quasiparticle many-
body renormalization in interacting electron systems. The
quasiparticle effective mass, m��rs�, depends on the inter-
action parameter rs, the so-called Wigner-Seitz radius,
which is the dimensionless interparticle separation mea-
sured in the units of the effective Bohr radius: rs /
n�1=2�n�1=3� in 2D (3D), where n is the respective 2D
(3D) density. (In 2D systems there is also a nonuniversal
correction arising from the finite width of the quasi-2D
layer in the quantization direction, which is a conceptually
simple form-factor effect.) In general, m��rs� increases
with increasing rs (i.e., with decreasing density), except
at very small rs, and for 2D systems of current experimen-
tal interest, the many-body renormalization could be by as
much as a factor of 2–3 at experimentally relevant den-
sities (rs � 5–10). In this Letter we discuss another fun-
damental new aspect of the quasiparticle effective mass
renormalization which, while being quite important quan-
titatively (particularly in 2D semiconductor systems of
current interest), has received relatively minor attention.
This is the dependence, m��rs; ��, of the quasiparticle
effective mass on the spin-polarization parameter �
(� jn" � n#j=n, where n � n" 	 n# and n", n# is the spin-
polarized carrier density). The fact that many-body effects
must depend nontrivially on the spin-polarization parame-
ter � (in addition to the density parameter rs) is obvious—
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for example, the completely spin-polarized � � 1 system
has a factor of 2 lower density of states at EF (and a
concomitantly larger, by 2 in 2D, Fermi energy), leading
to substantially different many-body renormalization than
the corresponding spin-unpolarized (� � 0) paramagnetic
system. We provide in this Letter the first complete calcu-
lation of the 2D and the 3D quasiparticle effective mass
renormalization m��rs; �� as a function of both rs and �
within the leading-order single-loop self-energy expansion
(Fig. 1) in the dynamically screened Coulomb interaction
(i.e., the infinite series of ring diagrams approximation).
Our calculated effective mass renormalization manifests
nontrivial dependence on the spin-polarization parameter
� , which clearly needs to be incorporated in understanding
the existing experimental data.

Our theory for the spin-polarization dependence of qua-
siparticle effective mass renormalization in interacting
electron systems is motivated not only by fundamental
many-body considerations, but also by practical and urgent
experimental needs. In particular, the recent measurements
[2–6] of 2D effective mass in semiconductor structures
invariably involve the application of an external magnetic
field (either parallel or perpendicular to the 2D layer and
often both), which polarizes the carrier spin. This makes
the interpretation of the measured effective mass as only a
density-dependent Fermi liquid parameter m��rs�, perhaps
with the appropriate quasi-2D layer width corrections,
highly conceptually suspect since the effective mass in
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such a spin-polarized system, m��rs; ��, should depend
strongly on both density (i.e., rs) and spin polarization
(i.e., �). (The precise magnitude of the spin-polarization
factor � is often not independently known, making an
interpretation of the 2D effective mass measurement diffi-
cult.) In addition to the direct connection to the experi-
mental 2D effective mass measurements, whose analyses
must now be reexamined in light of our theoretical results,
our calculated spin-polarization dependence of quasipar-
ticle effective mass should also be of considerable signifi-
cance to the fledgling subject of spintronics [1] where spin-
polarized carriers are manipulated in semiconductor struc-
tures for logic and memory microelectronics applications.
In spintronics applications, e.g., spin Hall effect [9,10] and
spin transistors [11,12], the carriers are often spin polar-
ized, and therefore the carrier effective mass would depend
nontrivially on the spin-polarization parameter � as pre-
dicted in our work. Such a spin-polarization dependence of
the carrier effective mass has so far not been taken into
account in the spintronics literature to the best of our
knowledge, but could turn out to be important in under-
standing experimental data and device modeling of spin-
tronic systems.

The many-body self-energy Feynman diagrams we cal-
culate for evaluating the quasiparticle effective mass are
shown in Fig. 1. This is the single-loop dynamical screen-
ing approximation (i.e., the infinite series of ring diagrams)
for the self-energy, generalized to the 2-component spin-
polarized situation. The spin up (down) quasiparticle self-
energy with momentum k and frequency ! in a polarized
electron system can be written within our approximation as
(see, e.g., [13])

�"�#��k; !� � �
Z ddqd�

i�2��d	1

vq
��q; ��

G"�#�0 �q	 k; �	!�;

(1)

where @ is always chosen to be 1, vq is the bare Coulomb
interaction between electrons with vq � 2�e2=q in 2D and
vq � 4�e2=q2 in 3D,
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!� �"�#�k � i�
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is the Green’s function for free spin up (down) electrons
with the noninteracting energy dispersion �"�#�k �

�k2 � k2"�#�
F �=2m with m being the bare band mass, and

��k; !� is the dynamic dielectric function. Here k"�#�F is
the Fermi momentum for the spin up (down) electrons.
k"�#�F � kF

������������
1
 �
p

for 2D and k"�#�F � kF�1
 ��1=3 for 3D,
where kF is the Fermi momentum for the unpolarized state.
We use � to denote an infinitesimal positive number, and
nF�x� for the Fermi function. At zero temperature, nF�x� �
1 when x � 0 and 0 otherwise. Within our approximation,
the dynamical screening is done by the infinite series of
ring diagrams, and we have
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��k; !� � 1� vq��"�k; !� 	�#�k; !�
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with �"�#��k; !� the noninteracting electronic polarizabil-
ity (i.e., the bare bubble in Fig. 1):

�"�#��k; !� �
Z d2q

�2��2
nF��

"�#�
q � � nF��

"�#�
q	k�

�"�#�q � �
"�#�
q	k 	!

; (4)

We note that this single-loop self-energy of Fig. 1 be-
comes asymptotically exact in the high-density rs ! 0
limit, but is known to give reasonable results in the low-
density rs > 1 regime also [13,14]. The reason for this
approximate validity of the single-loop self-energy well
into the strong coupling regime is the fact that the dynami-
cal screening expansion is not a series expansion in rs, but
is a self-consistent mean-field approximation where the
effective expansion parameter is akin to rs=�C	 rs� with
C� 1. Once the real part of the carrier self-energy,
Re�"�#��k;!�, is obtained, the effective mass is calculated
by the on-shell quasiparticle approximation [13,14]:

m
m�"�#�

� 1	
m

k"�#�F

d
dk

Re�"�#��k;! � �"�#�k �jk�k"�#�F
: (5)

The on-shell effective mass approximation given in Eq. (5)
is known to be a better approximation for the single-loop
self-energy calculation (compared, for example, to solving
the full Dyson’s equation iteratively) as it is more consis-
tent with the leading-order nature of the self-energy ap-
proximation itself—in fact, the on-shell approximation of
Eq. (5) is the natural spin-polarized generalization of the
quasiparticle effective mass renormalization in the usual
spin-unpolarized case [13,14]. Using the Feynman dia-
grams of Fig. 1, we have calculated the on-shell effective
mass renormalization m�=m for both majority and
minority-spin carriers in 2D and 3D electron systems as
functions of the rs and the � parameters, and below we
present these results. For the sake of conceptual clarity we
present both 2D and 3D results on the same footing without
incorporating any finite quasi-2D width corrections, which
are straightforward to incorporate and will reduce the 2D
renormalization by factors of 1.2–2, depending on the
carrier density and details of 2D confinement [14]. We
take the bare electron-electron interaction to be the usual
‘‘1=r’’ Coulomb interaction in a 2D or 3D system, and the
bare single-particle energy dispersion to be parabolic.

In Fig. 2 we present the calculated results for effective
mass in an ideal 2D electron system with Coulomb inter-
action. For the majority electron mass, which is the likely
experimentally measured quantity, effective mass de-
creases with increasing spin polarization. For small �
values, this decrease is relatively small. However, as �
approaches unity (i.e., near full spin polarization), the
effect becomes much stronger. This is perhaps the reason
for the misconception held in some of the earlier literature
that the effective mass is spin-polarization independent, as
it essentially is near � � 0, but certainly not for � � 1.
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FIG. 2 (color online). Calculated 2D effective mass as a func-
tion of spin polarization � at different rs values. Each curve
corresponds to an rs value of 1 to 10 with increment 1 from
bottom to top. Inset: zoom-in figure for majority effective mass
as a function of � for rs � 1 to 5 from bottom to top with
increment 1.
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Figure 2 also shows that the minority effective mass in-
creases with � first, and as � approaches one, it actually
decreases sharply. The spin-polarization dependence of the
effective mass is thus quite nontrivial and nonmonotonic.

In Fig. 3 we present the calculated results for the effec-
tive mass in an ideal 3D electron system with Coulomb
interaction. The major difference between our 3D results
shown in Fig. 3 and 2D results shown in Fig. 2 is that the
3D majority effective mass decreases more or less linearly
with increasing � , but the nonmonotonic dependence of the
minority effective mass on spin polarization is manifestly
present in 3D also, except it is less sharp than in the 2D
case.

In Fig. 4 we show the 2D majority effective mass as a
function of rs at � � 0 or 1 for both on-shell and off-shell
approximations. In the off-shell approximation the full
Dyson’s equation is solved for obtaining the quasiparticle
effective mass leading to m�"#=m � �1� @!�"#�k;!�
=
�1	 �m=k�@k�"#�k;!�
jk�kF"#;!�0. The important differ-
ence between the definitions of the on-shell and the off-
shell effective mass leads to a large quantitative difference
between their calculated values, as apparent in Fig. 4. In
general, the many-body renormalization corrections are
substantially suppressed in the off-shell calculation (within
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FIG. 3 (color online). Calculated 3D effective mass as a func-
tion of � for different rs values. Each curve corresponds to an rs
value 1 to 10 with increment 1 from bottom to top.
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the single-loop self-energy approximation), and as has
been argued extensively elsewhere [13,14], the on-shell
approximation is the correct effective mass approximation
for the single-loop self-energy used in our work, both for
the sake of consistency and for the approximate inclusion
of vertex correction. We note that the spin-polarization
dependence of the off-shell effective mass (as well as
the many-body renormalization itself ) is weaker than the
on-shell result. We point out that the only reason we are
providing the off-shell effective mass results in this Letter
(although within our approximation scheme of Fig. 1, the
on-shell mass is the appropriate one) is to emphasize the
fact that the off-shell result (which is often used in the
literature) is quantitatively highly inaccurate for the one-
loop self-energy approximation. For example, the on-shell
2D effective mass in our theory agrees far better [14] with
experiment than the corresponding off-shell results.

In further discussing our theoretical results for the spin-
polarization dependence of the quasiparticle effective mass
m��rs; �� we first note that the � dependence is rather weak
in the high-density limit (small rs). This trend can actually
be analytically demonstrated by obtaining the � depen-
dence of m��rs; �� in the rs ! 0 (and small �) limit, which
for the single-loop self-energy gives through a straightfor-
ward calculation:

m�"#
m
� 1	

rs���
2
p
�

lnrs �
rs����
2
p
�

lnrs; (6)

where rs � me2=
�������
�n
p

in 2D, and
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�
1

2�
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4

9�

�
1=3
� lnrs; (7)

where rs � me2�4�n=3��1=3 in 3D. Thus, in the small
�rs; �� limit, the spin-polarization dependence of m� is
small and linear in the spin polarization. For large spin
polarization, however, the dependence of dynamical
screening on the spin polarization is highly nontrivial,
and the minority-spin effective mass (note that the
minority-spin carrier density vanishes as the spin polariza-
tion approaches unity) shows a pronounced maximum
(both in 2D and 3D) that is not captured in the leading-
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FIG. 4 (color online). Calculated 2D majority effective mass
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order asymptotic expansion in the small rs and � limit. A
direct observation of this nonmonotonicity will indicate a
nontrivial many-body aspect of the spin-polarization de-
pendence of the spintronic effective mass renormalization.

We can now reexamine the previously mentioned ex-
periments [2–6] using our spintronic effective mass re-
sults. These experiments all use external magnetic field
induced Shubnikov–de Hass (SdH) oscillations to obtain
the effective mass of two-dimensional electron systems.
The SdH oscillation amplitude depends on the effective
mass, temperature, and magnetic field according to the
Dingle formula, through which effective mass can be
obtained by data fitting [2–6]. However, it is important
to notice that this is done in finite perpendicular magnetic
field, which invariably spin polarizes the system. As we
have already mentioned, it is conceptually wrong to as-
sume that the derived effective mass corresponds to the
zero-field mass because the effective mass depends on the
spin polarization. From our results shown in Fig. 2, we see
that when the polarization is less than 1=2, the effective
mass depends on the polarization weakly, and the above-
mentioned method of experimentally determining the ef-
fective mass may serve as a good approximation. However,
as spin polarization approaches one (such as the case in
Ref. [5]), the effective mass depends strongly on the
spin polarization, and fitting to the Dingle formula is no
longer a suitable method to obtain the finite field effective
mass, and certainly not the zero-field effective mass. One
must incorporate the spin-polarization dependence of the
quasiparticle effective mass in this situation in the experi-
mental analysis.

Since the single-particle self-energy, the density of
states, the dynamical screening, the Fermi momentum,
and the Fermi energy are all affected by spin polarization,
we expect all Fermi liquid parameters (not just the effec-
tive mass) to be strongly dependent on the spin-polar-
ization parameter � (in addition to being dependent on
rs). An important thermodynamic quantity is the system
compressibility, which is essentially the inverse of the
volume derivative of the pressure of the system. As a
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related application of the spin-polarization dependence of
many-body effects we have calculated the effect of finite
spin polarization on the compressibility of the interacting
spin-polarized 2D and 3D electron systems within the same
infinite ring-diagram approximation. We show these results
(only for the unpolarized and the fully polarized cases) in
Fig. 5, where again many-body spin-polarization correc-
tions to the interacting compressibility are obvious. Since
the interacting compressibility in 2D electron systems can
be directly measured [15] with great accuracy, we suggest
this as a possible way of estimating the spin-polarization
effect on the many-body compressibility.

We conclude by emphasizing that the ‘‘spintronic’’ ef-
fective mass (and compressibility) in spin-polarized carrier
systems could be strongly spin-polarization dependent and
substantially different from the usual unpolarized para-
magnetic values. Such a spin-polarization dependence
should have serious implications in various spintronic ap-
plications. For example, both spin Hall effect [9,10] and
spin transistors [11,12] involve the carrier effective mass,
which would be explicitly spin-polarization dependent,
complicating understanding of the experimental data. We
suggest that experiments be carried out to directly test our
predicted many-body spin-polarization dependence of the
carrier effective mass in 2D semiconductor structure.
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