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Intrinsic Spin Hall Edges
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The prediction of intrinsic spin Hall currents by Murakami et al. and Sinova et al. raised many
questions about methods of detection and the effect of disorder. We focus on a contact between a Rashba-
type spin-orbit coupled region with a normal two-dimensional electron gas and show that the spin Hall
currents, though vanishing in the bulk of the sample, can be recovered from the edges. We also show that
the current-induced spin accumulation in the spin-orbit coupled system diffuses into the normal region and
contributes to the spin current in the leads.
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Transport and manipulation of spins in semiconductor
structures have become a mainstream in condensed matter
physics [1]. In principle, spins can be injected into semi-
conductors by ferromagnets via electric contacts. However,
finding suitable material combinations that do not suffer
from the conductance mismatch [2] turned out to be diffi-
cult. Furthermore, introducing ferromagnetic materials
into the semiconductor microfabrication process is unde-
sirable from a technological point of view. The prospect to
generate spin accumulations in semiconductors without
ferromagnets or applied magnetic fields simply by driving
a current through a material with intrinsic spin-orbit (SO)
interaction and broken inversion symmetry [3–5] is there-
fore very attractive. A related effect that attracted a lot of
attention is the spin Hall effect (SHE), i.e., the spin current
(SC) that has been predicted to flow normal to an applied
electric current in the absence of an applied magnetic field.
When caused by impurities with spin-orbit scattering [6,7]
this effect is called ‘‘extrinsic.’’ A spin Hall current (SHC)
can also be generated by the spin-orbit interaction of the
lattice potential as has recently been predicted for p-doped
III-V semiconductors [8] and the two-dimensional electron
gas with a Rashba-type SO interaction (R2DEG) [9].
Whether the experimental observations of the spin Hall
effect by optical methods [10] have an intrinsic or extrinsic
origin is still a matter of debate. In spite of initial con-
troversies, analytic theories [11–16] as well as numerical
simulations [17,18] consistently predict that the SHE
should vanish in the disordered (bulk) R2DEG [19].
Some doubts remain whether the SC, being a noncon-
served quantity in SO coupled systems, is observable at
all [20].

In this Letter, we focus on the spin currents near normal
contacts. First, an elementary and general proof is given
that the spin Hall effect due to the lattice SO coupling (viz.
intrinsic SHE) must vanish in diffuse bulk systems with an
arbitrarily strong SO interaction that is linear in the elec-
tron wave vector. Nevertheless, using an extension of this
argument to finite system sizes, we show that near the
edges a spin Hall current can persist. Next, by solving
the kinetic equations for a model system of a R2DEG in
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contact with a normal metal system without SO interaction,
we calculate indeed a finite SHC. This SC is generated in a
skin depth determined by the Dyakonov-Perel [6] spin-flip
diffusion length (Ls) and the polarization is not normal to
the 2DEG, having a component due to the diffusion current
from the SO-generated spin accumulation (SA). The mag-
nitude of the SC generated at the edges depends on whether
the system is clean (impurity broadening less than the SO
splitting) or dirty (opposite limit). However, in contrast to
the bulk SC, the edge SC does not vanish when the system
is not ballistic (Ls smaller than the system size). The SC is
calculated in the normal metal contact and is therefore
certainly a transport current [20]. Related work on inter-
face and boundary effects focused so far on mesoscopic
systems via numerical simulations [21] and the SA near
hard wall boundaries [22].

We proceed to derive a transport equation valid in the
Boltzmann limit that is capable of handling the full spin
dynamics. In 2� 2 spin space, the Hamiltonian is

H � p2=2m� V�x� �HR � eE�t� � x; (1)

where x and p are the (two-dimensional) position and
momentum operators, respectively. Here the unit vector ẑ
is normal to the 2DEG, HR � ��=@�p � �� � ẑ� is the
Rashba Hamiltonian with Pauli matrices � and � parame-
trizes the strength of the SO interaction [23], E is the
electric field, and V�x� �

PN
i�1 ��x�Xi� is the impurity

potential, modeled by N impurity centers located at points
fXig. Although it is possible to consider ac fields, we focus
here on dc fields in the x direction and assume that the
electric field is turned on adiabatically in the remote past at
which the system was in thermal equilibrium; i.e., we
assume E � lims!0E0 exp�st=@�. To leading order in the
impurity potential the diagonal elements of the density
matrix in reciprocal space satisfy the following equation
[24]:

�isf�k� � �f�k�; HR
k 	 �

X
k0
�fkk0Vk0k � Vkk0fk0k�

� eE � �x; f0	: (2)

Here f0 � �f0
� � f

0
��=2� ���f

0
� � f

0
��=2 is the equilib-
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rium density matrix with f0

�k� � F �@2k2=2m
 �k�,

where F �E� is the Fermi function and �� � k � �� �
z�=k. The off-diagonal elements of the density matrix read

fkk0 �
i

2�

Z 1
�1

dEGR
k �E��f�k� � f�k

0��GA
k0 �E�Vkk0 : (3)

Here GR�A�
k �E� � �E�H0 �HR

k � ���is=2	�1 are re-
tarded (advanced) matrix Green functions. Substituting
Eq. (3) into Eq. (2) and averaging over Vkk0 (in the
Boltzmann limit averaging is equivalent to replacing
jVkk0 j

2 with its average value Nj�kk0 j
2=A2, where N is the

number of impurities and A is the area [24]) gives our basic
equation, valid for weak V and low enough impurity
densities to ignore weak localization effects, but to all
orders in �.

The mechanism behind the intrinsic SHE is the spin
precession of quasiparticles while being accelerated by
the electric field [9]. However, impurity scattering provides
a brake that in the steady state cancels the acceleration on
average. Therefore the SHE should vanish in an infinite,
homogeneously disordered system. This idea can be for-
mally expressed by considering the acceleration operator
�xi � eEi=m�riV=m� 2�2

@
�3�3ji�3pj, where �ijk is

the antisymmetric tensor and the Einstein summation con-
vention is implied. We notice that the last term is propor-
tional to the j0th component of the SC operator polarized in
the z direction, Jzj � fvj; �zg, where f; g is the anticommu-
tator. The expectation value is defined by hOi � TrfO,
where the trace is over wave vector and spin space, and
� � � denotes averaging with respect to impurity configura-
tions. In a steady state the average acceleration h �xii must
vanish, leading to the equality

2�2m2
@
�3�3jihJ

z
ji � eEi � hriVi: (4)

We show that the right-hand side of this equality also
vanishes by evaluating the expectation value of the decel-
eration due to impurity scattering:

hriVi � �i
X
kk0
�ki � k0i�Vkk0 trfk0k

� �i
X
k

tr�ki�f�k�; HR
k 	 � ikieEjrkjf

0� � eEi;

where tr is the trace over spin components and Eqs. (2) and
(3) have been used in the second step. Substituting the
expression above into Eq. (4) we see that all components of
the SC polarized in the z direction vanish with the average
acceleration [25]. This result holds for infinite systems
regardless of the range of the impurity potential or whether
the system is clean (�kF�=@� 1) or dirty (�kF�=@ 1),
where � is the momentum lifetime. This generalizes pre-
vious results [11–16]. However, as we show below, for
semi-infinite and finite systems, SCs persist near the edges,
but the size of these currents depends on whether the
system is clean or dirty.
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This line of argument allows one to check related
Hamiltonians. In the presence of k-linear Dresselhaus
and Rashba terms, the result remains unchanged besides
the substitution �2 ! �2 � �2, where � is the
Dresselhaus spin-orbit coupling constant. Thus the SHC
still vanishes (with the possible exception of the degener-
acy point � � � [26]). When the SO coupling contains
cubic terms like ��k� � �0 � �1k

2, it is easy to show that
the SHC is proportional to �1 [12]. Another possible
situation is the presence of a Zeeman field: in this case
the operator equation is modified to give ��3jihJ

z
ji �

h�iiB3 � h�3iBi, relating the SHC to the SA. If � varies
in space, the SHC is found to be proportional to the spatial
derivatives of � and f. If � is constant, but f varies, e.g.,
due to boundaries or interfaces [13], the SHC is propor-
tional to the gradients of the density matrix:

4�2m2

@
3

�3jihJ
z
ji �

�
ki

�
@

2kl
m
� ��ẑ� ��l;rlf�k; x�

��
:

(5)

This equation shows that although the bulk SH current
vanishes, there is no a priori reason for SH currents near
the edges of the R2DEG to vanish. Next, we show indeed
the SH currents do not vanish near the edges. We therefore
return to the quantum transport equation, allowing for
spatially varying density matrices but assuming short-
range s-wave scatterers with jVkk0 j

2 � N	2=A and
�=kF  1. We solve the transport equation by expressing
f in terms of a gradient expansion of 
�E� �
�i@2=2�m�

P
k�G

R
k �E�f�k� � f�k�G

A
k �E��. In the case of

s-wave scatterers and to leading order in m�=@2kF, this
generates the same diffusion equation as Ref. [13] and
Burkov et al. in Ref. [9]. In terms of components of the
density matrix, 
 � n� s � � � �3s3:

Dr2n� 4Ks�c�r� s�z � 0; (6)

Dr2s3 � 2Kp�r � s� �
2s3

�s
; (7)

Dr2s� 2Kprs3 � Ks�c�z� r�n �
s
�s
: (8)

Here D � v2
F�=2, �s � ��1� 4�2�=2�2, Ks�c �

��2=�1� 4�2�, Kp � @kF�=m�1� 4�2�2 and � �
�kF�=@. The SC is given, in the diffuse limit by

jij �
vF�

1� 4�2

�
�i3

�
sj � �jm3

��
2
rmn

�
� �ijs3

�

�Drjsi: (9)

Electric field dependence can be reintroduced by the sub-
stitution r! r� eE@E.

We now focus on a four terminal structure as depicted in
Fig. 1. This structure consists of two massive reservoirs
biased to produce a charge current in the x direction.
Between the reservoirs there is a R2DEG hybrid structure,
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FIG. 1. The schematic setup for SC generation in an R2DEG
that is current biased by reservoirs R1 and R2 and equipped with
2DEG Hall contacts with vanishing spin-orbit coupling to res-
ervoirs R3 and R4. The latter can be magnetic or nonmagnetic
and voltage biased such that no charge current flows through the
2DEGs. The dashed arrows indicate the local SHC densities that
are concentrated near the interfaces. The dominant part of the
spin current flowing into R3 (or R4) is generated within a skin
depth Ls near the corresponding interface and contains a diffu-
sion term from the SA Sy in the bulk of the R2DEG. The
contribution of the SHC density near R1 and R2 to the net SC
[13] flowing into R3 (or R4) is exponentially small.
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FIG. 2. SCs and accumulations in the R2DEG (y < 0) as a
function of distance from the interface to the 2DEG. The full line
is the local value of the SHC density for �kF�=@ � 0:1. At the
boundary the SHC density recovers its maximum value jB �
eEKs�c=2�� (it approaches the universal value eE=8� in the
clean limit �� 1). The dashed line is the z component of the
diffusion current density. Inset: Corresponding local SA in the
same system normalized to the magnitude of the bulk SA
eE��m=2�. The solid and dashed lines represent the y and z
components, respectively.
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with ��x� � �0 for L > y> 0 and ��x� � 0 for y < 0 and
y > L, and additional differences are disregarded. The
normal 2DEGs are coupled to massive reservoirs R3 and
R4, which are biased such that the charge current is zero,
but a SC can still be collected. To the order (in �=kF) that
we are considering, n does not depend on y. Alternatively,
one can assume that the transverse size of the leads to R3
and R4 are much smaller than the distance between R1 and
R2, in which case one can also neglect the y dependence of
n. We consider the distributions at a safe distance from the
reservoirs R1 and R2. In this region sy and sz depend only
on y and sx � 0 and the diffusion equation becomes

d2

d �y2 � 1 2 d
d �y

�2 d
d �y

d2

d �y2 � 2

0
@

1
A s2

s3

� �
�

�sKs�c
dn
dx

0

� �
; (10)

where  � �1� 4�2��3=2, �y � y=Ls, and Ls �
									
D�s
p

.
In order to derive the matching condition for the spin

and charge distribution functions at the contacts (i.e., inter-
face between the R2DEG and 2DEG), short-range fluctua-
tions of boundaries and interfaces that can lead to
additional spin relaxation [27] are disregarded. We con-
sider an arbitrary solution � of the Schrödinger equation
set by the Hamiltonian Eq. (1). We label the solutions in the
R2DEG and 2DEG regions �R and �N, respectively. At the
interface �Rj0 � �Nj0 and n � �ir� �0�z� ��	�Rj0 �
in � r�Nj0, where n is the unit vector normal to the inter-
face. Multiplying from the left with �jy0�i and evaluating
the imaginary part we obtain

n � �i�yN�ir�N � i�r�N�
y�i�N	j0

� n � �i�yR�ir�R � i�r�R�
y�i�R

� �0�
y
Rf�i; �z� ��g�R	j0:

We identify the right- (left-) hand side of this equation as
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the SC density in the Rashba (normal) 2DEG. In terms of
spin density matrices we have tr�fRf�i;n � j�0�g� �
tr�fNf�i;n � j�0�g�, where j�x� � fv; ��x̂� x�g is the local
current density operator. We therefore have to match the
normal components of the SC density given by Eq. (9) at
the interface [28]. Since the operator fvi;�gj can have a
nonzero expectation value in the equilibrium state it has
been questioned whether it governs transport of spins in the
presence of SO interaction [20]. We notice that the nega-
tive energy solutions (relative to the band crossing) of the
Hamiltonian Eq. (1) without the electric field term are
localized to the R2DEG region if surrounded by a region
with � � 0. In a normal 2DEG surrounding the R2DEG,
we can therefore show that equilibrium SCs exposed in
Ref. [20] do not transmit into the normal region. Moreover,
the expectation value of the SC density operator vanishes
for these localized solutions, and it is precisely the absence
of contributions from these solutions that shifts the equi-
librium value of the SC to zero.

Returning to the setup in Fig. 1, we assume that the
reservoirs R3 and R4 are sufficiently large such that all
components of the SA at their respective interfaces with
the ordinary 2DEG leads vanish. Shrinking the widths of
the 2DEGs to zero, we obtain the effective boundary con-
ditions si � 0 at the R2DEGjR3 interface. The finite
Ohmic resistance of a finite 2DEG region between the
R2DEG and the reservoir can easily be reintroduced if
necessary and would lead to somewhat smaller spin con-
ductances. We then can solve the diffusion equation above
and obtain the spin current using Eq. (9).

Analytical formulas turn out to be too lengthy to repro-
duce here. Our results are therefore summarized in Fig. 2.
The SA is suppressed at the interface, reflecting the
massive-reservoir boundary condition. The gradient of
the two components sy and sz leads to two SC components.
The SC polarized in the y direction represents the out-
2-3
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diffusion of the bulk sy SA. This is not a Hall current, since
it flows into the side contacts with opposite directions
(Fig. 2) with polarization that is inverted with the bias
current direction. The resulting spin conductivity at the
interface is �yxy � 0:87e�2=2� in the dirty limit (� 1).
For larger values of �, �yxy increases above this quadratic
behavior, but in the clean limit (�� 1) this increase is cut
off by the resistance of the normal region. When spins
diffuse from a finite distance into the 2DEG, they precess
in the SO-generated magnetic field. Consequently, there is
a diffusion current polarized along the z direction, for
which we find in the dirty limit a conductivity �zxy �
0:83e�2=2�. The conductivity �zxy, contrary to �yxy, de-
creases below this quadratic behavior for larger values of �
and vanishes in the clean limit. Nikolić et al. [21] recently
observed SCs with z and y polarization in numerical simu-
lations. In addition, we also find a SHC exponentially
localized to the edges that decays in the bulk on the length
scale Ls and reaches its maximum value eEKs�c=2�� at
the interface to the reservoir. This is due to the fact that the
first term in Eq. (9) being proportional to sy (thus zero at
the interface) is no longer screening the second term
(proportional to rn) and reflects the physical process that
the SHC density generated near the interface can escape
into the reservoir before it decays due to spin relaxation.
The resulting dc spin Hall conductivity is given by e�2=2�
in the dirty and e=8� in the clean limit. Our result differs
from that of the authors of Ref. [13] who did not take into
account the edge currents and obtained similar values only
for the ac response at carefully tuned frequencies.

In conclusion, we find that in a Hall geometry two
different spin currents can be extracted by the Hall contacts
from the current-biased disordered R2DEG. In addition to
the SHC, the current-induced SA drives a spin-diffusion
current. The SO-generated spin accumulation is therefore
not confined to the region where it is generated but can be
extracted and, at least in principle, used as a source of spins
for spintronics applications. Both diffusion and SHCs are
generated within a strip that scales like the Dyakonov-
Perel spin-diffusion length.
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