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Universal Dynamic Exponent at the Liquid-Gas Transition from Molecular Dynamics
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The liquid-gas system is expected to exhibit distinct dynamic behavior in the fluid’s critical region
(model H). We present molecular dynamics simulations of a Lennard-Jones fluid model starting from
specially designed, near-equilibrium, initial conditions. By following the fluid’s relaxation towards
equilibrium, we calculate the requisite transport coefficients in the critical region. The results yield the
scaling behavior of the thermal diffusion coefficient DT � �

�1:023�0:018 (� is the correlation length) and a
nonconventional divergent heat conductivity, all of which are in accord with mode-coupling and
renormalization group predictions, as well as some experimental data.
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The liquid-gas (LG) critical point is the archetypical
continuous phase transition and has been extensively
studied for more than a century [1–3]. Its universal critical
properties at equilibrium are well understood, based upon
scaling and renormalization group (RG) theories [2]. Nu-
merical values for its universal equilibrium critical expo-
nents are also known to a high degree of accuracy from
both sophisticated analytic approximations and precise nu-
merical simulations of simple models belonging to the same
universality class [2] (namely, the class of models with a
scalar order parameter and short-range attractive interac-
tions). Most importantly, these values are in excellent agree-
ment with a vast collection of experimental data [1–3].

Given the significant amount of effort that has been
devoted to establishing equilibrium LG critical exponents,
it is surprising how relatively little is known about their
dynamic counterparts [4]. In this regard, the simple lattice
gas system falls into either model A or B, in the
Hohenberg-Halperin classification [5] (where the order
parameter is nonconserved or conserved, respectively).
Model H of the LG system, however, is more complex
since the gradient of the conserved scalar order parameter
is now coupled to the transverse components of the fluid’s
momentum [6,7]. This, taken together with the phenome-
non of critical slowing down, has made the task of comput-
ing the critical dynamic exponents of the simple LG system
a formidable one to the present time. However, by crafting
appropriate initial conditions and thereafter following the
system relaxation to equilibrium, we are able to circumvent
these difficulties and use MD simulations to directly com-
pute the LG dynamic exponents, for the first time.

To review dynamic scaling in the context of model H, we
recall that the order parameter field q�r; t� is the heat due to
entropy fluctuations �dq � Tds� [3,4]. In the presence of a
temperature gradient the heat flux Q obeys the linear
response relation Q � ��rT, where � is the thermal
conductivity. Combined with energy conservation this
leads to the equation @q=@t � �r2T.
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Expressing rT in terms of the density gradient r� and
of rq leads to the heat equation

@q=@t � DTr
2q; (1)

where the thermal diffusion coefficient DT is given by

DT � �=cp: (2)

We emphasize that cp, and not cv, appears in the denomi-
nator of DT (cp and cv are the specific heats at constant
pressure and volume, respectively). This comes about from
density fluctuations and from the fact that, in the diffusive
regime, the local fluctuation of the density ���r; t� is
directly proportional to that of the thermal field q�r; t�
[3]. For this reason the mass (Fickian) diffusion coefficient
D is, in fact, identical to DT .

Hence, the behavior of DT may be obtained from ana-
lyzing density fluctuations. This has been well known since
the work of Landau and Placzek who, in 1934, showed [8]
that the light-scattering structure factor S�k; !� (Fourier
transform of density-density correlations) has, at ! � 0, a
diffusive (Rayleigh) peak of width DTk

2. In addition,
S�k; !� has two symmetric (Brillouin) peaks at ! �
�c0k (c0 is the sound velocity), of width �k2 (� is the
sound attenuation coefficient).

Accordingly, given a density fluctuation �k�0� of wave
number k at t � 0, its subsequent behavior at t > 0 is
given by [9]

�k�t�
�k�0�

�
cp � cv
cp

e�DTk2t �
cv
cp
e��k2t cos�c0kt�: (3)

The first term on the right-hand side is purely diffusive,
while the second describes oscillating (and attenuating)
sound waves. The ratio of their coefficients, cp

cv
� 1 di-

verges as a function of the temperature difference from
the critical point �� � T=Tc � 1� since cv � j�j��, while
cp � j�j

�� (�, the scaling exponent of the isothermal
compressibility, is always larger than �). Moreover, while
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DT vanishes at criticality, � does not and the second term
decays much more quickly than the first [10]. Thus, the
nondiffusive term is negligible, compared with the diffu-
sive one, near the LG critical point. This is true, in par-
ticular, if one is interested in the diffusive behavior since
the time period for sound oscillations 2�=c0k is much
shorter than the diffusion time decay 1=DTk

2 at the same
small wave number. For this reason longitudinal density
and pressure fluctuations are neglected at the outset in
postulating model H [5].

Our starting point for this work is thus the relationship:

�k�t� � e�DTk2t�k�0�: (4)

Close to the critical transition the correlation length �
diverges as jtj�	. As long as it is smaller than the system
size L, the longest relaxation time, ��, is obtained by the
substitution of k with ��1, so that �� � �2=DT . The dy-
namic critical exponent z is then defined through the
relation �� � �

z, with the scaling form of the thermal
diffusion constant given by DT � �w, so that

w � 2� z: (5)

Using Eq. (2) the scaling dimension y of the heat con-
ductivity (defined by �� �y), may be related to w and
2� 
 � �=	:

y � 2� 
� w; (6)

where 2� 
 is the exponent of the static correlations at Tc:
S�k;! � 0� � 1=k2�
. The exponent y is linked to the
shear viscosity scaling exponent x
 by the relationship y �
1� 
� x
, since we have [11] that �w � 1� x
.

Approximate values for some of these exponents have
been calculated from analytical approaches. Mode-
coupling theory [12] predicts y � 0:946 while the RG
�-expansion [5] estimate is y � 0:916. Using 
 � 0:032
[2], these approximations yield w � �1:022 and �1:052,
respectively. Two-loop RG calculations [13] with a
straightforward substitution of � � 1 yield to order �2 w �
�1:0712.

Obtaining accurate estimates for universal critical ex-
ponents like those shown above from model potentials has
been a long-standing challenge in the computer simulation
field. Given that there is a single independent dynamic
exponent in the long-time regime, dynamical critical prop-
erties may be expressed in terms of the dynamic exponent z
characterizing the longest time scale. These results have
been obtained for models A and B usually with
Monte Carlo (MC) simulations [14]. Simulations of
model H, on the other hand, cannot utilize these MC
methods since, in this case, algorithms are required that
account for the fluid’s translational degrees of freedom.
Therefore, MD is more appropriate to this situation and
most existing molecular dynamics (MD) simulations [15]
for the LG at its critical point have focused almost exclu-
sively on equilibrium properties, or employed to study
dynamical properties in this system, however, usually be-
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low the critical point transition, i.e., for investigating
domain-coarsening dynamics [16], spinodal decomposi-
tion [17], etc.

To the best of our knowledge, there are no extant direct
numerical calculations of the critical dynamic scaling ex-
ponents in a 3D LG system, a situation that provided the
impetus for the work presented here. Our simulation ap-
proach for doing this is based on relaxation dynamics
whereby we chose to follow the slowest decay mode of a
density fluctuation initially introduced into the system. The
method has recently been successfully used [18] in the
context of MC simulations of model B and here, for the
first time, we generalize its application to MD as well.

The approach consists of initially preequilibrating two
independent chambers, both of them at the critical tem-
perature Tc, with densities �1;2 � �c � ���t � 0�=2,
where �c and Tc are the equilibrium critical density and
temperature of the system. Both chambers are then brought
into contact with each other and the partition between them
removed. Following the relaxation of ���t� in each cham-
ber, the relaxational decay properties are computed. To
extract the diffusion constant DT , we look at the decay of
the slowest mode with k � 2�=L.

When the initial square-wave density profile ��r; 0� is
expanded in a Fourier series, this slowest mode has the
largest coefficient. More importantly, the higher harmonics
decay relatively quickly and the error due to the omission
of higher order terms decreases exponentially with time.
This error can be very precisely calculated and controlled
[18]. Another subtle advantage of the simulation approach
employed here is the unambiguous way in which the initial
conditions are established. The square-wave initial profile
allows for the preequilibration of the system so that the
introduced fluctuation can be made to fall within an arbi-
trarily small density region about the equilibrium one; i.e.,
one may be confident of reaching the linear response
regime, in which the Onsager theory applies, after some
initial time t0. Other relaxation dynamics methods have not
easily accommodated this situation.

A precondition to doing these particular simulations was
the availability of published equilibrium critical properties
for the pure LJ system found with MD simulations. To our
surprise, a literature review showed that these are rare, the
majority of such simulations having been carried out with
MC methods, usually using truncated potentials with tail
corrections added to include long-range effects. This can-
not be done with MD methods, however, since truncated
potentials lead to infinite forces at the cutoff point. As a
result, MD methods use truncated and shifted potentials,
which provide different critical property values to those
given by truncated potentials. In the literature, we found
MD critical values for only one set of truncated and shifted
LJ potentials, and these were used in this study. The
potential function used was taken from Litniewski [19]
with continuous (and zero) potential at the cutoff distance,
and is given by
1-2



PRL 95, 255701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005
u�r� �

8<
:

4��1r�
12 � �1r�

6	 for r 
 Rs � 3:0
4�r� Rc�2�A1 � A2�r� Rc�	 for Rs 
 r 
 Rc � 3:75
0 for r � Rc

: (7)
In Eq. (7) r is the distance between two particles and the
constants A1 � �3:657 978 97� 10�3 and A2 �
�1:630 228 7� 10�3 are chosen so that the force of this
modified potential is continuous at Rc and Rs. The cutoff
distance Rc is chosen to be 3.75 and the force at this
distance is continuous, therefore ensuring that this poten-
tial is suitable for MD simulations. The corresponding
critical properties of the infinite system for this potential
were found to be Tc � 1:2600, Pc � 0:1193, and �c �
0:3170 [19]. The reduced units in this work were also
normalized with respect to the LJ diameter � and potential
parameter ". The length L
 � L=�, energy U
 � U=",
density �
 � �=�3, time t
 � t=�m�2="�1=2, and simi-
larly for the thermodynamic and transport variables.

The simulation algorithm we used, as described earlier,
employed MD procedures to guide the relaxation dynamics
process. The preequilibration of each of the two chambers
was performed in an NVT ensemble using MD simula-
tions, in which the thermostats were implemented by a
reversible Nose-Hoover chain algorithm [20]. The en-
semble averages ���t� for each time scale were found
from 50 simulation data blocks over 200 different initial
nonequilibrium states in each block. The momenta in the
two chambers were initially set to zero so that there would
be no momentum difference between the two chambers
before and after the relaxation dynamics. As a conse-
quence, convective motion and shear forces in the cubic
system can be avoided.

The behavior of the density relaxation in the denser
chamber is shown in Fig. 1. We note that the relaxation
time for the density to approach equilibrium is more than
25.0 (in the above reduced units). Initially, there is a
pressure difference across the interface that also experien-
ces dynamical relaxation after the interface is removed. In
Fig. 2, we show the ‘‘pressure’’ relaxation in the system.
The out-of-equilibrium pressure is calculated from the
interparticle distances and forces using the virial theorem
FIG. 1. Density relaxation in a system with size L � 10 at the
critical point.
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[21] and thus coincides with the thermodynamic (hydro-
dynamic) pressure at (close to) equilibrium. The time taken
to approach the equilibrium value for the pressure, how-
ever, is much shorter than that of the density relaxation
process, especially in the critical region. For example, for
the system shown in Fig. 2 there is a transient behavior in
region 1 for times smaller than t� t0 � 4:46 before the
clear exponential decay sets in. At this time, the pressure in
both chambers has practically reached its thermodynamic
equilibrium value. Given the much faster relaxation of the
pressure difference, it does not affect the mass diffusion on
the time scale it takes the density to exponentially relax
(region 2). This feature is also consistent with the under-
lying assumption of model H as discussed above [5,7].

From the slope in region 2 of Fig. 1 the relaxation time is
obtained, which then yields DT from Eq. (4) with k �
2�=L. To extract the critical behavior of DT , we used
finite-size scaling. In Fig. 3 we draw the dependence of
lnDT at the critical point (of the infinite system) as a
function of lnL, the logarithm of the system size. The slope
yields the exponent w � �1:023� 0:018, thus, from
Eq. (5), z � 3:023� 0:018. Using Eq. (6) with the known
value [2] of 
 � 0:032� 0:003, we find y � 0:945�
0:021 (for comparison, the corresponding values [14,18]
for model B are w � �1:971 and z � 3:971). We note that
the approximate values of the exponents of both the mode-
coupling approximation and the � expansion with � � 1, as
quoted previously, are in good agreement with the simula-
tion results presented here.

In comparing with experiments we adopted an approach
that did not rely upon the use of thermal conductivity
scaling data, which are not considered sufficiently accurate
for this purpose [22]. Thus we compared our simulation
results with light-scattering data that measure directly the
relaxation rate of the order parameter fluctuations. Our
results are in excellent agreement (to within 1%) with the
FIG. 2. ’’Pressure’’ relaxation in a system with size L � 10 at
the critical point.
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FIG. 3 (color online). The heat diffusion coefficient DT at Tc
versus system size L ( log- log plot).
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very recent results of one group [23] and overlap within the
error bars with those of another one [24]. In addition, the
values of w derived from the measurements of xenon vis-
cosity on the space shuttle (w � �1:07) [25] and of the
mutual diffusion coefficient of a binary liquid-liquid sys-
tem (w � �1:09) [26] are within 5% of our largest bound.

In conclusion, we have presented simulation results for
critical dynamic exponents in a model H fluid, based upon
a relaxation dynamics simulation method. The exponents
found are in good agreement with some experimental data
and in good agreement with theoretical predictions of
mode-coupling and RG theories.

After this work was finished, a Letter appeared [27] in
which the authors use MD to compute the critical dynamic
properties of the Widom-Rowlinson (WR) model of a bi-
nary mixture at the consulate (separation) point. They find
w � �1:26 for the mutual diffusion coefficient. The
authors correctly point out that, while there is a clear
correspondence between the WR model (where there is
no temperature per se and the phase separation is driven by
increased density) and other model H systems in equilib-
rium, the correspondence between their dynamic critical
properties is much weaker (see also [11,28]. We hope that
in the future more investigations will help clarify this
question.
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