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Rotational Stabilization of Resistive Wall Modes by the Shear Alfvén Resonance
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It is found that resistive wall modes with a toroidal number n = 1 in tokamaks can be stabilized by
plasma rotation at a low Mach number, with the rotation frequency being lower than the ion bounce
frequency but larger than the ion and electron precession drift frequencies. The stabilization is the result of
the shear-Alfvén resonance, since the thermal resonance effect is negligible in this rotation frequency
range. This indicates that tokamaks can operate at normalized pressure values beyond the no-wall stability
limit even for low values of plasma rotation, such as those expected in fusion reactor scale devices.
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Resistive-wall-mode (RWM) stability is important for
tokamak confinement [1]. Experimentally, it was observed
that plasma rotation can stabilize resistive wall modes [2—
4]. Theoretically, it was found that mode coupling to the
sound wave resonance in rapidly rotating plasmas can lead
to stabilization of resistive wall modes [S—7]. The preces-
sion drift resonance in a slowly rotating plasma was like-
wise shown to be a stabilizing mechanism [8]. The
interaction of plasma rotation with plasma dissipation
can also result in resistive-wall-mode stabilization [9,10].

In this Letter we show that the shear-Alfvén resonance in
rotating plasmas by itself can lead to full stabilization of
resistive wall modes. Previously, the shear-Alfvén contin-
uum damping of the resistive-wall mode was investigated
in a cylindrical model with the zero-pressure singular layer
equation [11,12]. However, the strength of the continuum
damping needs to be assessed in toroidal geometry with
finite-pressure for realistic devices, such as the Inter-
national Thermonuclear Experimental Reactor (ITER)
[13]. This requires numerical computation.

Moreover, the calculation of the shear-Alfvén contin-
uum damping requires a sophisticated numerical method.
In previous calculation for toroidal Alfvén eigenmodes, a
technique based on changing the radial integration orbit
from the real orbit to a complex one surrounding the
Alfvén singularities was used to calculate the continuum
damping [14]. In this Letter we show that adaptive shoot-
ing together with a small-growth-rate treatment is an alter-
native technique. The small-growth-rate method needs
very high resolution computation near the singularities.
The adaptive numerical scheme of our AEGIS (Adaptive
EiGenfunction Independent Solution) code overcomes this
difficulty [15]. The AEGIS adaptive numerical scheme has
advantages in this regard over nonadaptive codes, such as
MARS [5]. In the calculations with the MARS code [5,6],
Bondeson and Ward concluded that the rotation stabiliza-
tion is primarily a bulk plasma effect associated with the
Landau damping of sound waves coupled to the instability.
The bulk nature of the damping is due to the fact that the
mode drives sound waves through toroidal coupling, so
that these waves are primarily nonresonant sidebands. The
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sidebands do, however, play a role in the vicinity of the
singular layers through the so-called apparent mass effect
[16]. Bondeson and Ward examined the role of shear-
Alfvén resonant damping near the singular layers and
incorrectly concluded that it was insignificant [6].
Subsequent investigations with the MARS code thus empha-
sized the bulk Landau damping. The present work, how-
ever, shows that shear-Alfvén damping is large and can be
the dominant effect for low plasma rotation.

In order to isolate the shear-Alfvén resonance damping
effect, we consider the following frequency regime:

w, > Q> (w,), )

where () is the rotation frequency, w,, is the ion bounce
frequency, and {(w,), denotes the bounce-averaged mag-
netic drift frequency. In this frequency regime the particle-
wave thermal resonances are very small. An even more
important reason to consider the frequency regime in
Eq. (1) is that it applies to the current design of ITER,
for which rotation is expected to have low Mach number.

The equilibrium is generated numerically with the TOQ
equilibrium code. The AEGIS code reads the TOQ equilib-
rium data and performs the stability analysis. We inves-
tigated ITER-like configurations with the following
parameters: major radius 6.2 m, minor radius 2.0 m, elon-
gation of the plasma cross section 1.86, and triangularity
0.5. The safety factor at the 95% flux surface is gg95 = 3.
We take the value of the safety factor at the magnetic axis,
qo, to be 1.05, slightly above unity, even though ¢ is below
unity in the ITER design. In this configuration the no-
wall stability limit occurs at By i = 3.4, where By =
B(I/aB,)~ ! with I the toroidal current, a the minor radius,
B, the magnetic field at the magnetic axis, correspond-
ing to a volume-averaged beta value of (B).; = 5.5%.
Here, B represents the ratio of the plasma and magnetic
pressures. We raised ¢ slightly above unity in order to
avoid the excitation of internal kink modes. Consequently,
the marginal beta values in this configuration are higher
than those for the ITER design (viz., By it = 1.77 and
(B)erit = 2.5%). To examine the rotational effect on resis-
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tive wall modes, we investigate an equilibrium with beta
values By = 3.88 and (B) = 6.2%, which are above the
marginal no-wall stability values. The critical position of a
perfectly conducting wall for stabilizing the resistive wall
modes in this equilibrium is at b = 1.53, where b is the
wall position.

To study the rotational effect on the resistive wall modes
in the frequency regime given in Eq. (1), the following
equation for toroidal plasma was solved with the AEGIS
code:

—p(1+M)(w+nQ+iy,)?¢E =V(E,-VP)+IXQ
+(VXQ)XB. (2

Here, & represents the magnetic field line displacement,
with subscript L denoting the component perpendicular to
the equilibrium magnetic field B; Q = V X (£, X B) is
the perturbed magnetic field; »n is the toroidal mode num-
ber; J denotes the equilibrium current density; P is the
equilibrium plasma pressure; and p denotes the plasma
mass density. The effects of parallel inertia, Coriolis force,
and plasma compressibility do not appear explicitly in
Eq. (2); they are replaced by the so-called apparent mass
effect My, which is simply given by M| = 2¢* in the case
of large aspect ratio and circular cross section [16]. The
structure of Eq. (2) is also justified from a fully gyrokinetic
treatment [17,18], which yields a further enhancement of
the apparent mass effect by the square root of the aspect
ratio, due to the contribution from particles with small
parallel velocities. In the present study, we do not use
kinetic theory to compute the kinetic enhancement of the
apparent mass M), but simply take the magnitude of M| to
be enlarged by the square root of the aspect ratio and define
the Alfvén frequency using the total mass density p(1 +
M))). The simple structure of Eq. (2) results from the low
frequency ordering in Eq. (1). In this frequency ordering
the particle-wave resonance effects are negligible, and the
centrifugal force effect can also be ignored [17]. The
rotation effect is negligible in the bulk plasma and becomes
important only in the vicinity of the mode resonance
layers: x*> — (w, + nQ)* = 0, where x is the normalized
distance from the rational surface and w, is the real part of
the mode frequency. In Eq. (2) vy, is a small positive
parameter taken to approach zero, which we use to heal
the numerical singularity while calculating the Alfvén
damping. This technique is similar to that used to evaluate
Landau damping with a small imaginary parameter. For
sufficient small 7 ,, the numerical result is insensitive to the
value of vy,. The solution of Eq. (2) is then matched to the
vacuum and wall solutions to form a complete eigenvalue
problem. The thin-wall assumption is adopted in our
investigation.

The numerical study of the eigenvalue problem shows
that plasma rotation can be a substantial stabilization
mechanism for resistive wall modes, even when Alfvén
resonances are the only dissipation. Figure 1 shows the

dependence of the growth rate of the » = 1 mode on the
wall position b for the ITER-type equilibrium described
previously. Figure 1 shows that the resistive-wall-mode
growth rate initially increases as the wall position in-
creases. However, after a certain wall position, the growth
rate drops sharply and the resistive wall modes become
stable. The most unstable resistive wall modes are found to
be those with negligibly small w,, consistent with the
previous numerical result [6]. This is because for an oscil-
lating magnetic field with finite frequency, the resistive
wall behaves like a conducting wall due to the skin effect.
Therefore, the resistive wall modes with finite frequency
are usually stable. The most unstable case is always the
case with negligibly small mode frequency. The depen-
dence of the growth rate on the plasma rotation frequency
for fixed b can also be deduced from Fig. 1. For a fixed wall
position, the growth rate first increases as the rotation
frequency increases and then decreases as the rotation
frequency increases further. The growth rate vanishes at a
sufficiently large plasma rotation frequency. The stability
region in terms of the wall position and the rotation fre-
quency is plotted in Fig. 2. The region b < 1.53 is stable for
a perfectly conducting wall, but unstable for resistive wall
modes without plasma rotation. In the presence of plasma
rotation, a stable region appears. It is informative to plot
the eigenmode structure. Figures 3 and 4 display the real
and imaginary parts of the eigenmodes when the rotation
frequency is ) = 0.005, with &, the component of &
perpendicular to magnetic flux surface .

We now justify our numerical results in three respects.
First, we note that the rotational effect in Eq. (2) does not
alter the basic equation structure, except to make the
problem complex. Therefore, as a check of our code, the
numerical results in the limit ) = 0 were compared with
the results computed from the GATO code [19]. We con-
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FIG. 1. RWM growth rate versus wall position with plasma
rotation frequency (normalized by the Alfvén frequency count-
ing in the apparent mass effect) as a parameter.
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FIG. 2. Stability boundary as a function of the critical wall
position and the normalized plasma rotation frequency.

firmed that, in this limit, the real part of the eigenmode
(shown in Fig. 3) reduces to the usual ideal MHD solution,
which agrees completely with the GATO result, and the
imaginary part simply vanishes.

Second, since the main rotational modification of the
eigenmodes appears only in the vicinity of the mode sin-
gular layers, we compared the numerical solutions near the
singular layers with the analytical solutions. Near the
singular layers, the mode can be described by the singular
layer equation [16]

d
A1~ (w, + nQ + iy, 20
dx

dx -0 ©)

&

FIG. 3. Real part of the RWM eigenmode for normalized
rotation frequency = 0.005.

where the finite 8 effect is dropped for simplicity. The
solution of Eq. (3) is

x— (o, + nQ) — iy,
x+ (o, + nQ) + iy,

&y = —i€,In +&, @
where ff/j and ‘ffp are constants describing the so-called
large and small solutions, respectively. The solution in
Eq. (4) has multiple values. Branch cuts must be imposed.
From the causality condition one can prove that the cuts
should be from the poles at x = *(w, + n{) + iy,) to o,
respectively. With these cuts introduced, &, becomes
single valued. The plasma rotation splits each MHD sin-
gular layer at x = 0 into twin layers at x = *(w, + n{).
The value of the real part of £, jumps by 7 across each of
the twin layers and is flat between. These characteristics
near the singular layers can be seen in our numerical
solutions (Fig. 3). Equation (4) shows that the imaginary
part of £, is a sum of two shifted logarithm peaks in
opposite signs; Fig. 4 shows exactly this feature. The
resemblance between analytical and numerical results ex-
tends to all other rotation frequencies. Because of space
limitations, only one set of numerical global eigenmodes
for ) = 0.005 is presented in Figs. 3 and 4.

Third, to provide further assurance for our numerical
results, we estimate the energy balance for resistive wall
modes. The variational principle corresponding to the
Euler-Lagrange equation of Eq. (3) is

W,y = Z[ffp(xz - n?Q?) @:r

dx -5

U

—iZ47TnQ|§ib|2, (5)

where w, and 7y, have been set to zero, which is a reason-

FIG. 4. Imaginary part of the RWM eigenmode for the same
parameters as in Fig. 3.

255003-3



PRL 95, 255003 (2005)

PHYSICAL REVIEW LETTERS

week ending
16 DECEMBER 2005

able approximation for resistive wall modes, & is the
separation between the twin resonances, and the summa-
tion is over all MHD mode rational surfaces.

To estimate the magnitude of 6W, in Eq. (5), let us
compare it to the no-wall and zero rotation energy, o W,
which can be computed numerically. For the equilibrium
we investigated, we find W, = —2.7 X 1073. For low n
modes in general, the average magnetic well can be used as
an estimate for 6W,,

where R/a is the aspect ratio and A is the Grad-Shafranov
shift. The vacuum energy 6W,, is positive and partly can-
cels the negative plasma energy in the first term on the
right-hand side of Eq. (6). The estimate in Eq. (6) is
consistent with our numerically calculated value. Com-
paring Egs. (5) and (6), one can see that §W,,, is compa-
rable to §W,, when the normalized rotation frequency () is
a few percent, as long as the ratio of the large solution ff/, to
the total solution &, is finite. This ratio has to be deter-
mined numerically. Nevertheless, inspecting Eq. (4), one
can see that the small solution is symmetric with respect to
x = 0, while the large solution is not. Since low-n modes
are radially broad, they are usually asymmetric around the
rational surface and therefore a considerable amount of the
large solution can be anticipated.

Having estimated the magnitude of 6 W, we proceed to
demonstrate its stabilization effect. Similar to the method
in Ref. [7], the resistive-wall-mode growth rate can be
estimated as follows:

_ 8W008Wh + |5VVrot|2 - i|8Wr0t|(8Wb - 8Woo)
[SW, + W, |?

YTw ™

’

)

where 7,, is the resistive wall magnetic diffusion time, and
6 W, is the system energy with perfectly conducting wall at
b and no rotation. From Eq. (7), one can see that the
imaginary 6W,, contributes to the stabilization. Note
that W, = 0 at the critical wall position b = 1.53. From
Eq. (7) one can see that the stabilization window should
open from the vicinity of the critical wall position and ends
at smaller b since 6W, increases as b decreases. This
feature is exhibited in Fig. 1. Equation (5) shows that
6W,, is proportional to 2€). Therefore, the rotation stabi-
lization should depend monotonically on (), which is seen
in Fig. 2.

In summary, we have found that the resistive wall modes
can be stabilized by the toroidal plasma rotation of low
Mach number, without any contribution from wave-
particle resonances. The sole stabilization mechanism
comes from the shear-Alfvén MHD resonance. Since
plasma rotation in the current ITER design has low Mach
number, our result indicates a promising stabilization
mechanism for ITER. The achievement of this result is

credited to the small-growth-rate numerical scheme and
the adaptive shooting method in the AEGIS code to resolve
the Alfvén continuum damping. Our current investigation
has focused on the rotation frequency regime where the
particle-wave resonance is excluded, in order to isolate the
Alfvén continuum damping effect and to address the pa-
rameter domain applicable to ITER. Nevertheless, even if
the sound wave or kinetic resonances were present, the
magnitude of the singular layer contribution revealed in
our calculation indicates that not only the bulk plasma, but
also the singular layers, contribute significantly to the
stabilization of the resistive wall modes.
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