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We investigate analytically the amplification of a weak magnetic field in a homogeneous and isotropic
turbulent flow lacking reflectional symmetry (helical turbulence). We propose that the spectral distribu-
tions of magnetic energy and magnetic helicity can be found as eigenmodes of a self-adjoint, Schrödinger-
type system of evolution equations. We argue that large-scale and small-scale magnetic fluctuations
cannot be effectively separated, and that the conventional � model is, in general, not an adequate
description of the large-scale dynamo mechanism. As a consequence, the correct numerical modeling of
such processes should resolve magnetic fluctuations down to the very small, resistive scales.
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Introduction.—It is well established both analytically
and numerically that a weak magnetic field can be ampli-
fied by the random motions of a highly conducting fluid [1–
3]. This occurs because magnetic-field lines are generically
stretched by the random motions of the fluid in which they
are (almost) ‘‘frozen.’’ Such mechanisms of turbulent dy-
namo action are invoked to explain the origin of magnetic
fields in astrophysical systems, such as planets, stars, the
interstellar and the intergalactic medium, etc.

In many cases magnetic fields are observed to be strong
and ordered on scales much larger than the velocity cor-
relation length. The traditional view is that the origin of
these fields can still be explained in the framework of
isotropic and homogeneous turbulence provided the lat-
ter lacks reflectional symmetry. For this case the he-
licity integral of the velocity can be nonzero, i.e., H �R

v � �r� v�dV � 0.
To illustrate this idea let us assume that the magnetic

field, compared to the velocity correlation length, lvel,
possesses only large-scale and small-scale components.
The magnetic-field evolution is described by the induction
equation

@tB � r� �v� B� � ��B; (1)

where � is the (collisional) diffusivity. Averaging over the
small-scale fluctuations, l & lvel we obtain the equation for
the large scale, or the mean magnetic field �B�x; t�. It can be
written in the general form [3,4],

@t �B � r� �� �B� � �� �B; (2)

where it is assumed that the mean field varies slowly in
space, and, therefore, its higher-order spatial derivatives
can be neglected. The parameters � and� can be estimated
on dimensional grounds to be �� hv � �r� v�i�v, and
�� hv2i�v, where �v is the velocity correlation time.

In Fourier space, the linear Eq. (2) has the eigenvalues,
�1 � ��k2, and �2;3 � ��k2 	 �k, where k is the wave
number. Thus a growing eigenmode always exists provided
05=95(25)=255001(4)$23.00 25500
small enough wave numbers are allowed in the system
under consideration (galaxy, laboratory device, simulation
box). The maximal growth rate is then given by �0 �
�2=�4��, and the corresponding scale of the growing
mean magnetic field is l0 � 2�=�. In order to comply
with the underlying assumption of scale separation it is
assumed that this scale is much larger than the velocity
correlation scale lvel.

The mean-field growth rate �0 vanishes if the velocity
fluctuations possess no helicity, H � 0. One therefore
might expect that the generation of magnetic fields at large
scales, l > lvel, in homogeneous and isotropic turbulence
may only be possible if the velocity field lacks reflectional
symmetry, and that such magnetic fields are described by
the mean-field equation (2). This effect is traditionally
called the �-dynamo mechanism.

However, numerical results suggest that the large-scale
magnetic-field evolution in helical turbulence may not be
adequately described by the � mechanism (2). For ex-
ample, Vainshtein and Cattaneo [5] noted that the small-
scale magnetic fields are amplified more effectively than
the large-scale ones, and when their energy is large enough
to affect the velocity dynamics, the � mechanism may
become much less effective. The influence of small-scale
magnetic fields on the large-scale dynamo mechanism (2)
has been stressed in many works (see, e.g., Refs. [6–8]).

Previous investigations of inconsistencies related to the
�-dynamo mechanism (2) essentially concentrated on the
nonlinear effects related to dynamo saturation, which, so
far, have resisted exact analytical treatment. Present-day
direct numerical simulations of turbulent dynamo action
cannot provide conclusive results either, due to quite lim-
ited numerical resolution, e.g., Ref. [9].

In this Letter we propose that some of the essential
physics of large-scale magnetic-field generation is, in
fact, captured already at the initial, kinematic stage of
dynamo action. Our analysis is based on the exactly solv-
able model of dynamo action due to Kazantsev [10].
Despite the many simplifying assumptions about the sta-
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tistics of the velocity field this model has proven to be a
valuable tool in understanding the dynamo mechanism. In
particular, it treats the induction Eq. (1) exactly, and it
allows a rigorous derivation of the �-model equation (2).
So far only the nonhelical case has been extensively ana-
lyzed in the literature, e.g., in Refs. [10–12]. Here we
address the problem in its full generality.

As an important new result, we show that the evolution
equations for the magnetic energy and the magnetic helic-
ity have self-adjoint structure (we note here that although
the kinematic-dynamo equations have been known for over
20 years, their self-adjoint structure had so far not been
discovered). As a consequence, in the kinematic regime,
the spectrum of magnetic fluctuations can be expressed as a
sum of eigenfunctions of a Schrödinger-type equation with
imaginary time, where the eigenvalue � gives the growth
rate of the corresponding mode.

In analogy to the quantum-mechanical states in a poten-
tial well, the eigenmodes growing with � 
 2�0 corre-
spond to ‘‘traveling particles;’’ i.e., they are correlated at
the system size. By contrast, the faster-growing modes
(with � > 2�0) correspond to ‘‘trapped particles;’’ their
correlation lengths are less than infinity, and they fill the
whole range of scales down to the resistive scale. At any
given scale the modes with � > 2�0 may rapidly become
dominant over the slowly growing nonlocalized modes.

The eigenmodes with � > 2�0 are not captured by the
mean-field equation (2); consequently the �-dynamo
model (2), based on the assumption of scale separation
and on small-scale smoothing, is inadequate. To describe
the large-scale dynamo mechanism correctly, numerical
simulations of uniform, isotropic, helical turbulence must
resolve the full range of scales from l0 to to l�. Further-
more, the origin of large-scale fields, such as those ob-
served in astrophysical situations, may be related to the
nonzero large-scale average of the fluctuating part of the
field, and not to the mean field as described by mean-field
models.

The Kazantsev model for helical kinematic dynamo.—
Kazantsev [10] and Kraichnan [13] introduced the solvable
models in the theory of passive random advection. The
essential assumption is that the random velocity field is
Gaussian and short-time correlated. It is also assumed that
the velocity field has zero mean, hvi � 0, so that the prob-
lem is completely specified by the velocity covariance
tensor. For the statistically homogeneous and isotropic
case, the covariance can be written as
hvi�x; t�vj�x0; t0�i � �ij�jx� x0j���t� t0�; (3)
where �ij is an isotropic tensor. For mirror-symmetric
velocities, the correlation tensor �ij is symmetric with
respect to the interchange of the indices i and j. In the
general case, however, this tensor has both symmetric and
antisymmetric parts,
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�ij�x� � �N

�
�ij �

xixj

x2

�
� �L

xixj

x2 � g	
ijkxk: (4)

The first two terms at the right-hand side of (4) represent
the symmetric, nonhelical part, while the function g�x�
describes the helical part of the velocity correlation tensor.
Here 	ijk is the completely antisymmetric pseudotensor,
and summation over the repeated indices is assumed. The
requirement that the velocity be incompressible implies
that �N�x� � �L�x� � x�

0
L�x�=2, where the primes denotes

derivatives with respect to x.
The magnetic-field correlator can similarly be intro-

duced: Hij�x; t� � hBi�x; t�Bj�0; t�i, satisfying

Hij � MN

�
�ij �

xixj

x2

�
�ML

xixj

x2 � K	
ijkxk; (5)

where the corresponding solenoidality constraint implies
MN � ML � xM0L=2. Our goal is to find the functions
ML�x; t� and K�x; t� that contain the information about
the magnetic energy and the magnetic helicity.

Differentiating Hij�x; t�with respect to t and making use
of (1), (3), and (4), we obtain after a cumbersome but
straightforward calculation, that the magnetic correlation
tensor obeys

@tH
ij � R̂imnR̂jrt�TmrHnt�; (6)

where R̂imn � 	ikl	lmnrk, andrk � @=@xk. An analogous,
although not identical, representation of this equation was
derived in Ref. [11], but see also the derivation in
Refs. [12,14]. The tensor Tij can be represented in the
following form:

Tij �
A���
2
p

�
�ij �

xixj

x2

�
� B

xixj

x2 �
C���
2
p 	ijk

xk

x
; (7)

where

A�x� �
���
2
p
��N�0� � �N�x� � 2�; (8)

B�x� � ��L�0� � �L�x� � 2�; (9)

C�x� �
���
2
p
�g�0� � g�x�x; (10)

and symbol B�x� in (9) should not be confused with the
magnetic field Bi�x; t� in Eq. (5). Hereinafter, we adopt the
notation �0 � �L�0� � �N�0�, and g0 � g�0�.

Equation (6) can be considerably simplified, since the
magnetic-field tensor (5) contains only two independent
functions, ML and K. The reduced equations were derived
in Ref. [11], however, the symmetric structure of the tensor
Eq. (6) was not preserved. In the next section, we derive the
reduced equations, keeping their symmetric structure in-
tact. In this way, we reveal the self-adjoint nature of the
equations which allows us to gain new insight into the
large-scale dynamo mechanism, and to elucidate the limi-
tations of the conventional �-dynamo paradigm presented
in the introduction.
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The self-adjoint dynamo equations.—In this section we
show that (6) is self-adjoint. We begin by rewriting (6) in
the equivalent form,

@tH
ij � D̂ij

l~l
Jl~lntH

nt; (11)

where D̂ is the self-adjoint differential operator

D̂ ij
l~l
� 	ikl	j~k ~lrkr~k; (12)

and the matrix J is symmetric,

Jl~lnt � 	npl	tq~lTpq; (13)

i.e., this matrix does not change under the interchange of its
lower and upper sets of indices. We now express the
operators D̂ and J in the basis defined by the three or-
thogonal ‘‘vectors:’’


ij1 �
1

x
���
2
p

�
�ij �

xixj

x2

�
; (14)


ij2 �
xixj

x3 ; (15)


ij3 �
1

x
���
2
p 	ijs

xs

x
: (16)

This is possible since the functions �ij, and Hij can them-
selves be expanded in this basis. The normalization of the
vectors 
2

1 � 
2
2 � 
2

3 � 1=x2 is chosen in such a way as to
preserve the self-adjoint structure of the differential opera-
tor, D̂, as we will see presently. A straightforward calcu-
lation leads to

J �
B A 0
A 0 C
0 C B

2
64

3
75; (17)

D̂ �

@2

@x2 � @
@x

��
2
p

x 0��
2
p

x
@
@x � 2

x2 0

0 0 1
x2

@
@x x

4 @
@x

1
x2

2
664

3
775; (18)

where both operators are manifestly self-adjoint.
We now make the following crucial observation. It can

be verified directly that the operator D̂ can be factorized as
D̂ � �R̂R̂T , where

R̂ �

0 @
@x 0

0
��
2
p

x 0
0 0 � 1

x2
@
@x x

2

2
64

3
75: (19)

This factorization immediately allows the dynamo equa-
tions to be transformed into self-adjoint form. Let us
introduce the vector W such that H � R̂W. As can be
directly checked, with this definition the vector H auto-
matically satisfies the solenoidality condition, i.e., its com-
ponents in the basis (14)–(16) can be represented as
H � f

���
2
p
xMN; xML;

���
2
p
x2Kg, where MN � ML �

1
2 xM

0
L,

and ML and K are some independent functions [compare
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this with (5)]. We further require that the vector W satisfy
the equation

@tW � �R̂
TJR̂W; (20)

then, clearly, the function H obeys the dynamo equation
(11), as can be verified by applying the operator R̂ to both
sides of Eq. (20). The operator in the right-hand side of
(20) is now explicitly self-adjoint. This representation
constitutes the formal solution of our problem.

For practical purposes, (20) can be further simplified
since only two components of the vector H are indepen-
dent. Conveniently, the necessary reduction is already
present in (20). Indeed, calculating the operator in the
right-hand side of (20), one sees that it acts only on the
second and the third components of the vector W, so that
the system is automatically reduced to the two independent
equations that preserve the initial symmetry structure. The
reduced equations have the self-adjoint form

@tW � � ~RT ~J ~RW; (21)

where ~R is the reduced form of the operator R̂, and ~J is the
reduced form of J:

~R �

��
2
p

x 0
0 � 1

x2
@
@x x

2

" #
; ~J � Ê C

C B

" #
: (22)

Here we introduced the self-adjoint operator

Ê � �
1

2
x
@
@x
B
@
@x
x�

1���
2
p �A� xA0�: (23)

The validity of (21) and (22) can be verified most easily by
direct calculation of the right-hand sides of (20) and (21).
For convenience, we write out the matrix form of Eq. (21)
explicitly:

@tW2

@tW3

� �
�

�
��
2
p

x Ê
��
2
p

x

��
2
p

x3 C @
@x x

2

�x2 @
@x C

��
2
p

x3 x2 @
@x

B
x4

@
@x x

2

2
4

3
5 W2

W3

� �
; (24)

and the relation H � ~RW reads

ML �

���
2
p

x2 W2; K � �
1���
2
p
x4

@
@x
�x2W3�: (25)

Equations (24) and (25) are the main result of this section.
For completeness, we note that the equations for the

functions ML and K were first derived by Vainshtein and
Kichatinov [11] in the non-self-adjoint form:

@tM �
1

x4

@
@x

�
x4�

@M
@x

�
�GM � 4hK; (26)

@tK �
1

x4

@
@x

�
x4 @
@x
��K� hM�

�
: (27)

Here we adopt the standard notation � � 2�� �L�0� �
�L�x�, h � g�0� � g�x�, G � �00 � 4�0=x, and M � ML.
These equations also follow from (24). We also note that
the Fourier-space versions of (26) and (27), were derived
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by Kulsrud and Anderson [15] for the limit of large mag-
netic Prandtl number (ratio of fluid viscosity to resistivity),
and by Berger and Rosner [16] for the general case.

Discussion and conclusion.—In systems with no kinetic
helicity [i.e., with C�x� � 0], magnetic dynamo action is
always possible if the magnetic Reynolds number is large
enough [11,17]. Since the ‘‘helical’’ terms in (24) have a
destabilizing effect, systems with kinetic helicity should
exhibit dynamo action as well. A rigorous analysis of the
dynamo mechanism requires knowledge of the exact spec-
trum of (24) which is not known for a general velocity
correlator, �ij�x�. However, the typical behavior of the
solution can be understood as follows. We introduce the
mean-field growth rate, �0 � g2

0=�0. From the asymptotic
behavior of system (24) as x! 1, one can show that its
eigenmodes with � > �0 are localized, and the closer the
growth rate to �0, the larger the correlation length. On the
other hand, the eigenmodes corresponding to � 
 �0 have
infinite correlation length.

The formal analogy between Eq. (24) and imaginary-
time quantum mechanics suggests that the eigenfunctions
with � > �0 correspond to ‘‘particles’’ trapped by the
potential provided by velocity fluctuations, while the ei-
genfunctions with � 
 �0 correspond to traveling parti-
cles. In the nonhelical case, where only trapped particles
have positive eigenvalues, the spacing between the eigen-
values decreases with increasing magnetic Reynolds num-
ber; see, e.g., Ref. [12]. It is reasonable to expect that the
same result holds for the helical case.

We now explain the extent to which the mean-field
equation (2) describes the dynamo mechanism. Remark-
ably, in the Kazantsev model, Eq. (2) can be derived
exactly (see, e.g., Refs. [4,14]), which allows one to find
its precise relation to Eq. (24). In the derivation, �B�x; t� is
the field averaged over the statistical ensemble of the
velocity fluctuations (3), and the coefficients in the
mean-field equation (2) are given by � � g0, � � ��
�0=2 [14]. In this model, �0 � 2�0. Equation (2) can
therefore be used to derive the evolution equation for the
correlator of the mean field, �Hij�x; t� � h �Bi�x; t� �Bj�0; t�i,
where the brackets denote averaging over the random
initial conditions of the magnetic field.

It can be checked that this evolution equation for-
mally coincides with the large-scale asymptotic (x! 1)
of our system (24); consequently, it can only be used to
obtain the large-scale asymptotics of the solutions of
Eq. (24). More precisely, representing the magnetic field
as Bi�x; t� � �Bi�x; t� � �Bi�x; t�, where �Bi is the fluc-
tuating part, we can write Hij�x; t� � h �Bi�x; t� �Bj�0; t�i �
h�Bi�x; t��Bj�0; t�i. We note that while the system (24)
describes the exact function Hij�x; t�, the mean-field equa-
tion (2) captures only its slowly growing nonfluctuating
part �Hij, which is described by the large-scale asymptotics
of Hij�x; t�, since the correlation of the fluctuations van-
ishes for infinite scale separation.
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In summary, we have used the Kazantsev model to
compare the exact spectra of magnetic energy and helicity
with the predictions of the � model (2). We have demon-
strated that the large-scale asymptotics (x! 1) of the
exact solution is described by the nonlocalized eigenmodes
(� 
 �0) of the self-adjoint dynamo Eq. (24). This asymp-
totics can also be derived from the mean-field �-dynamo
equation (2). However, model (2) misses the faster-
growing eigenmodes with � > �0, which are present in
(24). The correlation lengths of these eigenmodes are
generally not small. They fill the range of scales from the
system scale to the resistive ones, so these modes may not
be removed by a small-scale smoothing procedure. In
numerical simulations or astrophysical applications these
modes may dominate the slowly growing ‘‘mean-field’’
modes. The correct description of the dynamo mechanism
thus requires the resolution of the whole range of scales
available to the magnetic field.
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