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Kertész Line and Embedded Monopoles in QCD
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We propose a new class of defects in QCD which can be viewed as embedded monopoles made of quark
and gluon fields. These objects are explicitly gauge invariant and they closely resemble the Nambu
monopoles in the standard electroweak model. We argue that the ‘‘embedded QCD monopoles’’ are
proliferating in the quark-gluon plasma phase while in the low-temperature hadronic phase the spatial
proliferation of these objects is suppressed. At realistic quark masses and zero chemical potential the
hadronic and quark-gluon phases are generally believed to be connected by a smooth crossover across
which all thermodynamic quantities are nonsingular. We argue that these QCD phases are separated by a
well-defined boundary—known as the Kertész line in condensed matter systems—associated with the
onset of the proliferation of the embedded QCD monopoles in the quark-gluon plasma phase.
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The phase diagram of quantum chromodynamics has a
rich structure in the ‘‘chemical potential’’ (�)—‘‘tempera-
ture’’ �T� plane [1]. In particular, at a small chemical
potential QCD predicts the existence of a transition at Tc �
170 MeV from the low-temperature hadronic (or, ‘‘con-
finement’’) phase to the high-temperature quark-gluon (or,
‘‘deconfinement’’) phase. It is generally believed that at
realistic quark masses this transition is a smooth crossover
across which all thermodynamic quantities and their de-
rivatives are nonsingular [1,2]. At larger � the phase
transition reemerges at a tricritical point and then continues
as the first-order phase transition. At even higher chemical
potential more exotic phases (such as the color supercon-
ductor phase and the color-flavor locking phase) appear
[1]. Below we concentrate on the crossover region at
moderately small chemical potential.

The�-T phase diagram of QCD in a wide region around
the tricritical point, Fig. 1(a), is qualitatively similar to the
phase diagram of the standard model of electroweak (EW)
interactions in the ‘‘Higgs boson mass’’ (MH)—tempera-
ture �T� plane, Fig. 1(b). As it is well known, the symmetric
(high-temperature) and the Higgs (low-temperature)
phases in the EW model are separated by a strong first-
order EW phase transition at relatively small Higgs boson
masses [3]. As the Higgs boson mass increases, the first-
order transition weakens and stops at a tricritical end point
�TE;ME

H� � �155 GeV; 72 GeV� at which the transition is
of the second order [3,4]. At higherMH the phase transition
becomes a smooth crossover across which all thermody-
namical quantities are smooth similarly to the case of
QCD.

Another qualitative similarity between QCD and the EW
model is that both field theories do not possesses any
topologically stable monopole or vortexlike defects.
However, the absence of the stable topological defects
does not make the topological structure of the EW model
less interesting because it is well known [5] that this model
contains the so-called ‘‘embedded’’ defects called the
Nambu monopoles [6] and the Z vortices [7].
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Analytical arguments [8] as well as dynamical simula-
tions of hot EW model with the Higgs boson massesMH �
30 GeV and MH � 70 GeV show [9] that the first-order
EW phase transition is accompanied by the percolation
transition of the Z vortices and the Nambu monopoles.
These embedded defects are suppressed in the Higgs phase
and they are forming a dense percolating (condensed)
medium in the symmetric phase. As the mass of the
Higgs particle increases, the percolation transition does
not stop at the tricritical point and it continues into the
crossover region [10] still discriminating between the high-
and low-temperature phases; Fig. 1(b).

In the condensed matter physics, the percolation transi-
tion realized in the absence of the thermodynamic phase
transition is usually referred to as the Kertész line [11]. The
simplest realization of the Kertész line appears in the Ising
model in an external magnetic field. Each configurations of
the Ising spins can be associated with a set of the Fortuin-
Kasteleyn (FK) clusters [12] which are defined as a set of
lattice links connecting nearest spins in the same spin
states. The FK clusters are known to be proliferating
(percolating) in the high-temperature phase. As the tem-
perature gets lower the percolation of the FK clusters
disappears (in the absence of the external magnetic field)
at the phase transition (the Curie point). However, at non-
zero external field the partition function is analytic in
temperature and the phase transition is absent while the
percolation transition (the Kertész line) still exists at any
value of the external field.

The concept of the Kertész line appears naturally in
QCD without reference to any (topological) defects. At
high enough temperature or density of the quark matter—
for example, in the heavy-ion collision experiments—the
hadrons may overlap and form clusters within which the
quarks are no more confined. The onset of the quark-gluon
plasma phase may be associated with the percolation tran-
sition of the hadron clusters [13]. In the context of the field
theory the Kertész line was also discussed for the mono-
pole [14] and vortex [15] percolation in compact U(1)
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FIG. 1. (a) QCD and (b) EW phase diagrams around tricritical
points. The properties of the embedded defects [suggested in
QCD in this Letter and found in the EW model in Refs. [8–10] ]
are indicated in the brackets. The tricritical point, the first
transition line, and the Kertész line are depicted as, respectively,
the filled circle, the solid line, and the dashed line.
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Higgs models, for the Nambu monopole [8], the Z-vortex
[9,10], and the center vortex [16] percolation in the case of
the SU(2) Higgs model.

Consider the embedded topological defects in the EW
model with vanishing Weinberg angle, �W � 0, for sim-
plicity. The bosonic sector of this model is basically the
SU(2) gauge model with the Higgs doublet ��x� �
��1�x�; �2�x��

T. The embedded defects in the EW model
are defined with the help of the composite scalar field
�a�x�:

�a�x� � ��y�x��a��x�; (1)

where �a are the Pauli matrices acting in the isospin space.
The field �a transforms in the adjoint representation of
gauge group and can be treated similarly to the triplet
Higgs field in the SO(3) Georgi-Glashow model.
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In the unitary gauge of the EW model, ��x� �
�0; ��x�� T , the composite field � gets automatically fixed
to the SO(3) unitary gauge, �a � j ~�j�a3. The nonzero
expectation value of the Higgs field � in the Higgs (low-
temperature) phase of the EW model guarantees a nonzero
expectation value of the composite field � because of the
identity ~�2 � ��y��2. Thus, if the Higgs field � resides
near the classical minimum of the Higgs potential, h�i �
�0; ��T , then the composite field � does so near the value
[17] �a0 � h�

ai � j�j2�a3, or

h ~�2i � h ~�2
i2 � j�j4: (2)

The nonzero vacuum expectation value of the composite
field �a in the Higgs phase makes it possible to construct a
monopolelike configuration of the EW fields—called the
electroweak Nambu or the electroweak monopole [6]—in
a manner similar to the ’t Hooft-Polyakov [18,19] con-
struction of a monopole in the Georgi-Glashow model. The
position of the monopole singularity can be identified with
the help of the gauge-invariant ’t Hooft tensor [18],

F����;W� � Fa���̂a �
1

g
	abc�̂a�Dad

� �̂�b�Dad
� �̂�c;

�̂a �
�a

j ~�j
;

(3)

where �̂a � �̂a��� is the unit color vector, pointing into
the direction of the composite � field (1), Fa�� � Fa���W�
is the field strength tensor for the SU(2) gauge field Wa

�,
and �Dad

� �
ab � �ab@� � g	abcWc

� is the adjoint derivative.
Equation (3) defines the gauge-invariant field strength ten-
sor for the Z-component of the gauge field, Z� � Wa

��̂
a.

The current of the Nambu monopole,

kEW
� � @� ~F �� �

Z
C

@XC
� ���
@�

��4��x� X����;

~F �� �
1

2
	��
�F ��;

(4)

has a �-like singularity at the monopole world line C
parametrized by the vector x� � XC

����. The location of
the embedded monopoles are encoded in the gauge fields
W� and the Higgs fields � via relations (1), (3), and (4).

The Z-magnetic charge of the Nambu monopole is
quantized [5] in units of gm � 4�=g and is conserved by
virtue of its definition (4), @�kEW

� � 0, and therefore the
Nambu monopoles can only disappear by annihilating with
antimonopoles. In the unitary gauge, �̂a � �a3, the elec-
troweak monopole is just an Abelian monopole singularity
in the diagonal gauge field Z� � W3

�. Therefore, the elec-
troweak monopole is an Abelian monopole embedded into
the EW model.

Coming closer to QCD, let us consider for simplicity the
SU(2) gauge theory with one species of a (generally,
massive) fermion field  which transforms in the funda-
mental representation of the gauge group. Then one can
construct two SU(2) QCD analogues of the electroweak �
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field (1):


a� � � �x���a �x�; � � 1; i�5; (5)

where both the scalar 
a and the pseudoscalar 
a5 fields are
the real-valued triplet vectors in the isospin space (we drop
the index � in 
� if � � 1).

The existence of the isospin vectors (5) allows us to de-
fine the currents of the gauge-invariant monopoles in the
SU(2) QCD in a manner similar to the EW construction
(4):

k�
� � @� ~F ���
�; A�; (6)

where F �� is the ’t Hooft tensor (3) in which the EW
gauge field W� is replaced by the SU(2) gluon field A�,
and the EW composite field � is substituted by the fermi-
onic composite fields (5). Equation (6) provides an explic-
itly gauge-independent way to identify monopolelike
singularities in QCD using the fermionic degrees of free-
dom along the ideological line of Ref. [20]. The location of
the embedded QCD monopoles is encoded in the gluon Aa�
and fermion  fields via relations (5), (3), and (6).

The k� and k5
� fermionic monopoles carry the magnetic

charge with respect to, correspondingly, A� � Aa�
̂
a and

A5
� � Aa�
̂

a
5 components of the gauge field. In the unitary


̂a � �a3 (or, in the ‘‘pseudo-unitary,’’ 
̂a5 � �a3) gauge
the k� (or, respectively, k5

�) fermionic monopoles corre-
spond to monopoles embedded into the diagonal compo-
nent, A3

�, of the gluon field. One can also consider these
monopoles as Abelian monopoles determined in an
Abelian gauge [21] which is defined by a requirement of
diagonalization of the corresponding composite fermionic
field (5). Finally, in gauges, in which the gauge field A� is
smooth (i.e., in the Landau gauge), one can consider the
embedded monopoles as the hedgehogs in the composite
quark bilinears (5).

Thus, in the toy case of the Nf � 1 SU(2) gauge theory
one can define two types of the embedded QCD monopoles
constructed from vector and pseudovector variables (6).
The existence of the topologically nontrivial monopoles
(6) is not a dynamically motivated fact. Instead, it is a
simple (kinematical) consequence of the existence of the
adjoint real-valued fields (5), which are not required to be
condensed [22].

In the real case of QCD the zoo of the embedded mono-
poles is much richer. Indeed, in the SU(3) gauge theory
with Nf massive fermions one can introduce two matrices
in the flavor space instead of two composite scalar fields
(5):

�a
ff0;��x� �

� f�x���
a f0 �x�; (7)

where �a, a � 1; . . . ; 8 are the SU(3) Gell-Mann color
matrices and f; f0 � 1; . . . ; Nf are the flavor indices.
Each element of these matrices transforms in the adjoint
representation of the SU(3) gauge group.
25200
To characterize the quark embedded defects in QCD we
use the fact that the global flavor symmetry is explicitly
broken by mass terms at the Lagrangian level (we consider
the realistic case of nonequal quark masses). Using flavor
transformations one can rotate the quark fields into a flavor
basis where the mass matrix is diagonal. In this basis the
diagonal elements of the matrices (7) should be considered
as the real-valued color octet fields 
af;� � �a

ff;� (no sum-
mation over the index f). The diagonal elements 
af;� are
then used to construct the gauge-invariant embedded
monopoles as in the toy Nc � 2, Nf � 1 case (6). Given
the octet vectors (7) the monopole charges in the Nc � 3
color case can be characterized by integer magnetic
charges similarly to the monopoles in the SU�Nc� Higgs
models [23].

Therefore, in QCD with Nf massive fermions there are
two types of monopoles associated with each quark field
(i.e., we have 2Nf embedded monopoles in total). The
trajectories and charges of these defects can be defined
analogously Eq. (6). In principle, one can also define the
‘‘mixed’’ defects which involve quark-antiquark bilinears
of different flavors. Note that in the massless case the chiral
rotations mix the quark bilinears (5) with each other.
However, in the real QCD case we expect that the mono-
poles constructed from scalar and pseudoscalar triplet
fields must be different due to the breaking of the axial
symmetry by the ground state.

The composite quark fields 
af and 
af;5 play the role of
the adjoint Higgs field in the SU(3) version of the Georgi-
Glashow model. The existence of the stable monopoles in
the Georgi-Glashow model is guaranteed by the sponta-
neous breaking of the SU(3) symmetry by the Higgs con-
densate. Contrary to the Georgi-Glashow model, the color
symmetry in QCD is known to be unbroken [22].
Nevertheless we argue below that in QCD the role of the
Higgs condensate is played by chiral condensates [24],
which make the definition of the embedded QCD mono-
poles physically meaningful.

Properties of the defects can be guessed from the be-
havior of the condensates made of the octet, 
a �

P
f�a

ff,
and the axial octet, 
a5 �

P
f�a

ff;5, fields. Obviously, due
to the unbroken color invariance, h
a�i � 0. Thus, the
length of the composite Higgs octet field is characterized
by the four-quark condensates h ~
2

�i � h � ��a � ��a i
with � � 1; �5. The factorization hypothesis [25] makes
it possible to express the four-quark condensates in terms
of the chiral condensate h �  i,

h ~
2
�i � C�h �  i2; (8)

where C� is a numerical factor, and  � u or d.
The QCD relation (8) is remarkably similar to the EW

relation (2). At low temperatures the composite octet fields

a� are large similarly to the low-temperature behavior of
the composite � field in the EW model. As temperature
increases, both the four-quark condensate in QCD and the
2-3
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Higgs expectation value in the EW model are diminishing,
and they have small but nonvanishing values at the corre-
sponding crossover temperatures.

In the EW model the large zero-temperature value of the
�-field condensate gives rise to a large mass of the Nambu
monopoles which suppresses the monopole formation.
This fact may be understood intuitively since the field �
must be vanishing inside the core of the Nambu monopole
and this is unfavorable in the presence of the � condensate.
Similarly, the embedded monopoles in QCD force the octet
fields 
a� to be vanishing in the center of the monopole in
order to support their hedgehog structure. This is energeti-
cally unfavorable at low temperatures because of the pres-
ence of the four-quark condensates (8). However, as the
temperature (and the chemical potential) increases, the
condensates (8) continuously melt and the suppression of
monopoles becomes less and less effective. At very high
temperatures the value of the condensates is negligibly
small and the embedded QCD monopoles must form a
dense and percolating network—supported by thermal
fluctuations—similarly to the behavior of the embedded
EW defects [9]. Since at realistic quark masses the phase
transition is absent [26], the onset of the percolation tran-
sition marks the Kertész line in QCD as shown in Fig. 1(a)
by the dashed line. It seems very plausible that the perco-
lation of the hadron clusters in the quark-gluon phase [13]
is related to the proliferation of the embedded QCD
monopoles.

Our considerations are based on the temperature behav-
ior of the four-quark condensates which is qualitatively
valid [27] beyond the simple factorization formula (8).
Moreover, quantitative estimations of Ref. [27] show that
as temperature increases the vacuum expectation value of
the pseudoscalar octet fields is dropping faster compared to
the scalar octet fields. Therefore, the QCD Kertész line,
Fig. 1(a), may in fact be split into two lines since the onset
of the percolation of the pseudoscalar embedded mono-
poles may happen at (much) lower temperature compared
to the monopoles associated with the scalar 
 field. In the
real QCD case the Kertész line should inevitably be split
because the onset of percolation of the embedded mono-
poles associated with different quark fields should happen
at different temperatures due to the difference in the quark
masses.
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