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Stochastic Loewner Evolution for Conformal Field Theories with Lie Group Symmetries
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The stochastic Loewner evolution is a recent tool in the study of two-dimensional critical systems. We
extend this approach to the case of critical systems with continuous symmetries, such as SU(2) Wess-
Zumino-Witten models, where domain walls carry an additional spin-1=2 degree of freedom.
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FIG. 1. A ribbon represents an SLE trace carrying spin degrees
of freedom. Points zi are positions of primary fields. A spin-1=2
operator positioned at the tip extends the trace up to another
spin-1=2 operator on the boundary.
Introduction.—Traditionally, critical phenomena are de-
scribed by scale invariant fluctuations of local order pa-
rameters. In two dimensions, statistical mechanics models
and conformal field theories (CFTs) [1], describing their
critical behavior, can often be formulated in terms of
fluctuating loops—simple critical curves. These curves
can be viewed as external perimeters of critical clusters [2].

A radically new development, called stochastic Loewner
evolution (SLE) [3–5], revitalizes the latter representation
of critical models in two dimensions, addressing directly
the stochastic geometry of critical curves. SLE suggests a
specific description of the statistics of the critical curves
through simple Brownian motion.

So far the applications of the SLE approach were limited
to the least structured CFTs with central charge c � 1 [6].
Yet, many applications of CFT, including condensed mat-
ter problems, possess continuous internal symmetries, such
as, e.g., SU(2) spin-rotational symmetry for electrons in a
solid. The most important CFTs with such symmetries are
Wess-Zumino-Witten (WZW) models [7], whose central
charge is c � 1. Popular applications include spin chains
[8], Kondo problems of a magnetic impurity in metal [9],
and D-branes [10].

Can the SLE approach describe more structured CFTs
such as WZW models? Here we address this question.
Indeed, some WZW models at level one can also be
represented by fluctuating loops, but now the loops are
decorated by a representation of the Lie algebra [11].

In this Letter we show that the SU(2) WZW model, at
any level, can be described by a composition of the stan-
dard SLE stochastic process and a Brownian motion in the
Lie algebra [12]. Being interesting by itself, this represen-
tation allows one, in particular, to compute, amongst other
properties, the fractal geometry of the loops (we report this
result elsewhere).

Stochastic Loewner evolution.—Consider a critical
(scale invariant) system in the upper half complex plane,
called the physical plane. We impose different boundary
conditions to the left and to the right of a point w0 on the
real axis, chosen so that a domain wall emanates from w0.
The domain wall is a fluctuating curve. SLE interprets this
curve as the trace of a self-avoiding walk progressing with
a properly chosen time t.
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At t � 1 the trace hits the boundary and surrounds a
critical domain. At any t <1 one considers the slit domain
Ht, i.e., the upper half-plane from which the trace is
removed (see Fig. 1). The slit domain can be mapped
conformally onto the upper half-plane by a function f�z�
normalized so that f�z� � z� 2t=z� � � � near z � 1. The
coefficient t is called the capacity of the trace and is chosen
to be the time of the evolution. Under this map the tip zt of
the trace in the physical plane maps to a point w0 � ��t� on
the real axis. Loewner’s equation connects the evolution of
the conformal map f�z� to that of the image w0 � ��t�:
_f�z� � 2=�f�z� 	 w0 	 ��t�
. It is convenient to shift the

map to become w�z� � f�z� 	 ��t�, so that the tip is al-
ways mapped to the fixed point w0 on the real axis of the
mathematical plane (coordinate w). Then Loewner’s equa-
tion becomes

dw�z� �
2dt

w�z� 	 w0
	 d�: (1)

In SLE, ��t� is a Brownian motion: � _��t� _��0� �� ���t�.
We use the symbol � � � � � for the stochastic average over
the Brownian motion � not to be confused with the CFT
average h� � �i as, e.g., in Eq. (2). Equation (1) generates a
stochastic self-avoiding trace whose statistics is that of a
domain wall in a CFT with central charge c � 1, deter-
mined by the noise strength � through the relation c �
1	 6�

���������
�=4

p
	

���������
4=�

p
�2.

The WZW model.—Involves a field G�w; �w� taking val-
ues in a Lie group. It is a CFT whose action is invariant
under independent holomorphic left and antiholomorphic
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right multiplication G! UGV	1. It possesses correspond-
ing conserved Noether currents JL � @GG	1, JR �
	G	1 �@G, which are holomorphic (JL) and antiholomor-
phic (JR). This requires the matrix G�w; �w� to be a product
of two holomorphic matrices G�w; �w� � gL�w�g	1

R � �w�. In
terms of these, the currents are expressed as JL �
�@gL�g	1

L , JR � � �@gR�g	1
R .

Conformal and gauge invariant boundary conditions
require that the current normal to the boundary vanishes,
i.e., JL � JR on the real axis [13,14]. This condition
‘‘glues’’ holomorphic and antiholomorphic fields, gL�w� �
gR�w�� (for Imw � 0), where � is a matrix in a Cartan
subgroup. As a result, the field G � gR�w��g

	1
R � �w� be-

longs on the boundary to a conjugacy class (which, in the
quantum theory, is quantized) [10]. For SU(2), conjugacy
classes are 2-spheres S2 parametrized by a unit vector ~n, or
points. A boundary condition can be thought of as being
associated with a spin [14,15]. A change of boundary
condition at some point on the real axis can be described
by a so-called boundary condition changing operator [16]
which, in the present case, carries spin.

After these comments, consider a critical cluster of a
WZW theory. Its boundary is characterized by its fluctuat-
ing geometry (the shape of the cluster), which is ‘‘deco-
rated’’ by a spin. Together this can be seen as a self-
avoiding walk in the physical plane with a fluctuating
spin-1=2 degree of freedom.

The next paragraph recounts arguments which are well
described in the SLE literature [3,4,6]. Therefore, we
mention only briefly the main steps.

Martingales and correlation functions in the slit do-
main.—Let us study correlation functions (conformal
blocks) of primary fields [1,7] of a conformally invariant
model, called ‘‘spectators,’’ inserted at points zi in the slit
domain Ht made by the trace (see Fig. 1). The positions zi
do not move while the trace evolves. Each field ��i�zi�
carries spin si and conformal weight hi (for a theory with
no Lie group symmetry set si � 0). We denote by  � a
boundary condition changing operator [16] which is also a
primary field [for the SU(2) model we choose it to be a
spin-1=2 primary field, while for c < 1 a �2; 1� or a �1; 2�
field in the Kac classification]. Such operators are inserted
at the tip and at the end (i.e., at infinity) of the trace.

A bulk operator is the product [13] of two holomorphic
operators located at ‘‘Schwarz-symmetric’’ points as
��i�zi���i�z



i �, and transforming in the same representa-

tion. An example of a spectator is the matrix G itself. We
denote a product of spectators by O�fzig� and their corre-
lation function in Ht by F � h�jOj�iHt

. In terms of CFT
this correlation function reads

F �t; fzig� �
h y��1�O ��zt�iHt

�1=2�h y��1� ��zt�iHt

: (2)

It is known [6] that if we average the correlator (2) in the
slit domain over all configurations of the SLE trace, we
obtain a CFT correlator in the upper half-plane H with the
25160
boundary operators inserted:

� h�jOj�iHt
�� h y��1�O ��w0�iH: (3)

This implies, as we now review, the steady state condition

@t � F �� 0: (4)

A stochastic quantity, whose average is time-independent,
is known as a ‘‘martingale.’’ The argument showing that a
correlation function with two boundary operators is a
martingale is as follows [6]. At time t we decompose the
trace into two parts: one between points w0 and zt, and the
other between zt and infinity (see Fig. 1). We average over
all configurations of the trace in two steps. First, we fix the
first part and average over the second. Then we average
over the first part. The first average can be seen as the CFT
average in the slit domain formed by the trace, with two
boundary operators inserted, one at the tip of the trace and
one at infinity. After performing this (first) average we
obtain the quantity in (2). The insertion of the boundary
operators effectively averages over the second piece of the
domain wall. The second average over the shape of the first
part of the trace, as on the left-hand side of (3) gives us
back the original correlator (right-hand side of that equa-
tion). The latter, however, does not depend on the choice of
the midpoint zt. Thus the stochastic mean of the correlator
F is time independent. It is a martingale.

Stochastic evolution on SU(2) manifold.—In a WZW
model we expect not only the geometrical fluctuations due
to the growing trace, but also stochastic SU(2) rotations.
Accordingly we introduce additional, independent
Brownian motions in the left and right su(2) Lie algebras,
�L;R � �aL;RS

a, with variance

� _�aL;R�t� _�bL;R�0� �� 	�ab��t�: (5)

Again, we use the symbol � � � � � for the stochastic
average over the Brownian motions � and �a. Sa are
generators of su(2) in a representation conventionally nor-
malized as SaSa � s�s� 1�. We define a stochastic evolu-
tion in the (complexified) Lie algebra by the equations

�L �
d�L

w	 w0
; �R �

d�R
�w	 w0

; (6)

where �L;R � �dgL;R�g	1
L;R, d�L;R � _�L;Rdt. Here the time

t is the capacity of the trace, and the time derivative is taken
at a fixed point w in the mathematical plane. Under this
evolution, we let the matrix G itself evolve as dG �
�LG	G�R. These equations respect the form of G as
a product of left and right moving factors. The boundary
conditions require the left and right Brownian motions to
be equal, �R � �L. From now on we will follow only
holomorphic components, dropping the index L, as if there
were no boundary [13,15].

The pole in the evolution Eq. (6) located at the image of
the tip of the trace indicates the presence of a source of
current J atw � w0 in the mathematical plane. This source
originates from a juxtaposition of two different gauge
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invariant boundary conditions to the left and to the right of
w0. We select the pair of boundary conditions so that the
domain wall, located in the physical plane, carries spin
1=2. In the language of boundary CFT, this corresponds to
a boundary changing operator, transforming in the
spin-1=2 representation, to appear at position w0 [16].
The spin 1=2 at the tip of the trace in the physical plane
fluctuates during the evolution, and leads to a ‘‘twisting’’ of
the domain wall (see Fig. 1).

Making use of the current J�w� � @wGG
	1 in the

mathematical plane, the evolution Eq. (6) can be rewritten
in a form where the time derivative is taken at a fixed point
in the physical plane:

� �
d�

w�z� 	 w0
� dw�z�J�w�z��: (7)

Under an infinitesimal gauge transformation the current
changes as dJ � ��; J
 � @w�. With the help Eqs. (1) and
(7), we obtain

dJ � 	
d�

�w	 w0�
2 �

�
�A � h

dw0

w0
�
dw
w0
@z

�
J: (8)

Here �AJ � �d�; J
=�w	 w0� is the adjoint action of the
evolution (6), h � 1 is the conformal weight of the current,
and w0 � @zw�z�. (8) is a Langevin equation for the cur-
rent, resembling [using (1)] the operator product expansion
of the latter with a primary boundary operator located at
the tip.

Langevin equation.—While all the spectator points zi in
the physical plane remain fixed under the time evolution,
the trace evolves, and together with the infinitesimal rota-
tions this leads to a Langevin dynamics for correlators F
of primary fields, as defined in (2). Using Loewner’s equa-
tion (1) and Eq. (6), this is conveniently written through
negative grades and global parts of Virasoro and Kac-
Moody algebra generators:

dF � �	d�aJ a
	1 � d�L	1 	 2dtL	2�F ; (9)

L	n �
X
i

�
hi�n	 1�

�zi	w0�
n	

1

�zi	w0�
n	1

@
@zi

�
; n�	1;

J a
	n �	

X
i

Sai
�zi	w0�

n ; n� 0;1; . . . :

(10)

(The sum extends over all spectators and the boundary
operator at infinity.) Similarly, the Langevin Eq. (8) for
the current reads, when written in this manner,

dJ�d�aJ a
	2��	d�

aJ a
	1�d�L	1	2dtL	2�J; (11)

where now all the generators have the form of Eq. (10) but
there is only a single term with zi ! z in the sums.

Diffusion equation.—Let us average the correlator F �t�
in (2) over all configurations of the fluctuating geometry of
the trace and its spin-1=2 degree of freedom. Since the
evolution has the form of a Langevin dynamics, the expec-
tation value obeys a diffusion equation. The latter is ob-
tained in the standard manner (see, for example, [6]). We
25160
average Eq. (9) over the Gaussian noises. The terms linear
in dt come from the first and the second order: � dF ��
�� G	1dG � � 1

2 � �G
	1dG�2 �� � F � . Here G is the

time evolution operator, G�t�, defined by F �t� �
G�t�F �0�. One obtains the diffusion equation:

@t � F �� 	H � F �; (12)

where

H � 	
�
2
L2
	1 � 2L	2 	

	
2
J a
	1J

a
	1: (13)

Similarly, we may consider correlators with insertions of
the current operator as an additional spectator. Denoting by
F J � h�jO�fzig�J�z�j�iHt

a correlator of primary fields
with an insertion of the current, we obtain, with the help of
(11), a diffusion-type equation:

@t � F J �� 	H � F J � 		J
a
	1J

a
	2 � F �; (14)

where the last (anomaly) term comes from the first term in
Eqs. (8) and (11). Here J a

	2 acts only on the position z of
the current insertion and J a

	1 on all the spectators apart
form the current, while the operators in H act on all
spectators, including the current insertion.

Singularity at the tip.—So far the variances � and 	 of
the two types of Brownian motion where treated as inde-
pendent parameters. A simple physical requirement con-
nects them. We may be interested in stochastic processes
where martingales (correlation functions) do not have es-
sential singularities as a spectator approaches the tip of the
trace. In other words, the singularities of the solutions of
the differential equations feature only branch cuts, i.e., the
equations are Fuchsian. This occurs only if

�� 	 � 4: (15)

The simplest way to obtain this condition is to demand that
the stochastic average of the one-point function of the
current exhibits only a single pole as the current insertion
approaches the tip of the trace. Setting O � 1 in (14) we
see that the stochastic average of the current one-point
function is a zero mode of the operator

�
2
@2
z �

	
2

2

�z	 w0�
2 � 2@z

1

z	 w0
: (16)

The requirement that this zero mode be a single pole yields
the important condition (15) relating the two variances. It
implies, in particular, that 0 � � � 4, since the variance 	
is non-negative; therefore, the trace does not intersect itself
[4]. [If (15) is not satisfied, one still appears to obtain a
possible stochastic process, but with essential singularities
in the martingales.]

Knizhnik-Zamolodchikov equation and conformal
weight.—The second order differential Eqs. (4), (12), and
(13) can be reduced to the first order Knizhnik-
Zamolodchikov equation [7], as we now demonstrate.

Let us denote by Ln and Jn the Virasoro and the current
algebra operators acting on the boundary condition chang-
ing operator  �w0� :�  ��w0� at the tip of the trace. In
1-3
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particular, L0 � h0, where h0 is the conformal weight of  ,
L	1 � @w0

, and Ja0 � 
a=2 acts on the spin 1=2 of  . The
operators in (10) are representations of these operators.
Note that Ja0 � F �� J a

0 � F � just expresses the invari-
ance of the correlator under global SU(2) transformations.
Since the boundary operator  is quasiprimary [1], it is
annihilated by L1. Acting with L1 on (4), (12), and (13)
yields the first order differential equation

�L	1 	 2�Ja	1J
a
0 � � F �� 0; (17)

where 2� � 	=�6	 �2h0 � 1��
. Acting with L1 again
yields

�L0 	 �Ja0J
a
0 � � F �� 0; (18)

which gives h0 � �s�s� 1�, with s � 1=2 the spin at the
tip. We recognize in (17) and (18) the first two modes of the
Sugawara relation [7]. Equation (17) is the Knizhnik-
Zamolodchikov equation arising as a level 1 Null vector
of the operator at the tip, and (18) yields the familiar
conformal weight of the WZW model [7].

Finally, if we parametrize � � 1=�k� 2�, and use the
relationship (15) between � and 	, we obtain for k � 1

	 �
4

k� 3
; � � 4

k� 2

k� 3
: (19)

The above conditions, however, do not specify 	 and �, at
k � 1. The reason for this is that at k � 1 the WZW model
is a CFT with c � 1, and can be equivalently described in
terms of Abelian fields (see below).

In the following paragraph, the parameter k will be
identified with the level of the su�2�k current algebra.

Null vectors.—The action of the operators (10) creates
descendant operators of the boundary operator  at the tip.
Equations (4), (12), and (13) mean that � � H is a Null
vector [1,7]. Acting with J b

1 on (17) shows that the pa-
rameter k defined in the last section is the level of the Kac-
Moody algebra. Furthermore, acting with L2 on (4), (12),
and (13) expresses the central charge as c � 3

4 	k� �3�	
8�h0. Inserting h0 � �3=4�=�k� 2� into the equation ap-
pearing in the text below (17) yields a quadratic equation
for the level k as a function of � and 	. Thus, both c and k
are functions of � and 	. Using (15) one recovers c �
3k=�k� 2�, the familiar central charge of su�2�k.

Relation to unitary minimal models.—As in usual SLE,
the variance � alone determines the geometry of the trace.
The CFT that describes the geometry of the trace alone
corresponds to SLE�, with � given by (19). The corre-
sponding portion of central charge is c� � 1	 6

�k�2��k�3� .
We observe that this is the central charge of the minimal
unitary model, which can be thought of as the coset model
su�2�k � su�2�1=su�2�k�1. The remaining part of the central
charge, c	 � 3�k� 1�=�k� 3� 	 1, is the same as that of
the coset su�2�k�1=u�1�k�1 or Zk�1 parafermion [17]. It
describes the ‘‘twisting’’ of the trace.

Abelian reduction.—Our stochastic approach is easily
specialized to the case of the Abelian group U(1). In this
case the requirement of Fuchsian singularities that led to
25160
Eq. (15) gives the simple condition � � 4 and eventually
leads to c � 1. Equations (4), (12), and (13) still hold but
have a different meaning. They are satisfied by a correlator
at c � 1, where the boundary operator has dimension 4h �
1	 	. By varying h away from h � 1=4 (	 � 0), corre-
sponding to the SU(2) WZW model at level k � 1, one
obtains an evolution which depends both on the geometry
and on the U(1) current algebra symmetry. An analog of
(4), (12), and (13) for the Abelian case was obtained in
Ref. [18] using methods very different from ours.
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