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Stellar Stability by Thermodynamic Instability
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For gravity-dominated systems the three features shrinking < energy decrease < temperature increase
are dynamically linked together. So are their inverses: expansion < energy increase < temperature
decrease. We exhibit these features by one classical particle in a suitable environment, and by many
particles with purely attractive interactions. We then show how the ensuing negative heat capacity tames

an explosive energy input.
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Stars are threatened by two gigantic instabilities. The
gravothermal effect (negative heat capacity) tries to im-
plode the star, and thermonuclear reactions try to explode
it. These two giants are shackled together and stabilize
each other for billions of years. But beware, if eventually
one of them gets weaker than the other. The following
scenarios are known.

(1) The center of a star gets so dense that the electron gas
becomes degenerate and the heat capacity becomes posi-
tive. Then, as soon as new nuclear material can burn, it
does so in a huge nuclear explosion (helium flash). How-
ever, the outer part of the star still has a negative heat
capacity and absorbs this energy by expansion and cooling.
In this way the thermal instability extinguishes the nuclear
fire, and the appearance of the star does not betray its
serious digestion problems. We notice only a slight swell-
ing of the belly.

(2) When the temperature reaches a level such that
electrons may creep into the protons to create a neutron
and a neutrino, the nuclear power feeds no surplus energy
into the star. All excess energy is immediately carried away
by the neutrinos, and electrons disappear to carry the
weight of the star. Then nuclear power gives in and gravi-
tation shows its might. The star collapses within seconds,
and its luminosity exceeds the shine of its galaxy: A
supernova appears, and a neutron star or a black hole is
left over.

(3) The two giants age together, keeping equal strength.
The star contracts to lose its negative heat capacity and
exhausts its nuclear fuel. Then it turns peacefully into a
white dwarf and, perhaps, into a Wigner crystal.

The phenomenon of negative specific heat of gravita-
tional systems has a long history. The first hints can be
found in the book Gaskugeln by Emden from 1907 [1]. In
1962 Antonov demonstrated that the phase-space volume
below the energy shell diverges for 1/r-potential systems
with sufficiently many particles [2]. As a consequence, the
heat capacity becomes negative. This fact was readily
accepted in astronomical circles [3—5], but only recently
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sufficiently many examples have been found to establish it
in physics [6,7]. There were some good reasons for this
reluctance of physicists.

(I) In the canonical ensemble the specific heat is given
by the square fluctuations of the energy and cannot become
negative. The reason is simply [8] that as long as the
specific heat is negative the system does not come into
equilibrium with the heat reservoir. If the canonical and the
microcanonical ensembles are equivalent, also the latter
has positive specific heat. For Coulomb systems, this
equivalence has been proved by Lieb and Lebowitz but
still in some atomic spallation experiments traces of nega-
tive specific heat have been observed. This seeming contra-
diction may have the resolution that either the system is too
far from the thermodynamic limit or it is not ergodic, and
some ergodic components have negative specific heat [9].

(IT) Thermodynamic stability means that the energy as a
function of entropy, volume, and the number of particles is
convex. This is guaranteed if, and only if, this function is
subadditive and homogeneous of first degree. If all forces
are attractive, subadditivity follows and thermodynamic
stability becomes equivalent to homogeneity, which means
that the energy is an extensive quantity [10]. It is the latter
property that fails for gravitation-dominated systems.

First, we study the phenomenological energy evolution
of a heated system and show how negative heat capacity
turns a repellor into an attractor. Next, we show how a
single particle in a constant gravitational field acquires a
negative heat capacity by a clever jumping board. We can
even realize the Bekenstein-Hawking thermodynamics
[11,12]. Finally, we illustrate these effects by our favorite
example for negative heat capacity, classical particles with
attractive pair interactions. Once a cluster has been formed,
we simulate the nuclear processes by heating the core of
the cluster. In doing so, we leave the energy shell and go to
higher energies. In stars this energy increase comes to an
end, since it loses energy by radiation. We simulate this by
cooling the particles that hit the container walls. In this
way, the energy is decreased again and the two mecha-
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nisms together lead to the convergence of the energy to a
final value. Plotting the temperatures gives the crazy pic-
ture that upon heating the temperature decreases, and only
increases again once the cooling becomes effective. In this
way, the two instabilities cancel each other and allow an
equilibrium temperature to be reached.

Phenomenological thermodynamics.—To begin, we
consider only the energy E and the temperature 7 of the
system. Their changes are linked by the heat capacity c:
dE = cdT. c is always considered to be a given constant.

Suppose, for simplicity, that we have an energy source
~nT and an energy sink ~ — s7 such that, in suitable time
units, dE/dt = (n — s)T, and, thus, dT/dt = (n — s)T/c.
This has as a solution 7(7) = T(0)e"" /<. Two observa-
tions follow immediately.

(I) For a normal system (¢ > 0) we get explosion, that is
an exponential increase of the energy, if n > s; otherwise
the system freezes.

(IT) When the system has a negative heat capacity, ¢ <0,
it is just the other way around. If n stands for the nuclear
energy production, then this instability is tamed by the
negative heat capacity of a star. On the other hand, if n
ceases and only s (from neutrino production) remains, we
get the supernova implosion.

Next we want to model the situation, where the nuclear
energy production n sets in only above a critical tempera-
ture T.. For simplicity, we represent the rate of energy
emission by a constant s. We have to distinguish the cases.

(I) Positive heat capacity: In this case we take the energy
production n(E — E,) for E > E,, and 0 otherwise. The
time evolution is given by dE/dt = n(E — E.) — s for
E>E,. and dE/dt = —s if E<E_. If E(0) > E, + s/n,
it is explosive, E(t) = E(0)e" + (E, + s/n)(1 — e™).
Otherwise, it decreases with time.
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FIG. 1. Geometry and short trajectory for the jumping-board
model. The gravitational force points into the negative y direc-
tion, and the particle is elastically reflected at the bottom, which
is given by V(yn.x) as specified in the main text. Since the
particle is also reflected at the line x = 0, the spatial domain may
be restricted to positive x. The energy, E = 1 for this figure,
corresponds to the maximum height, y,.«, the jumping particle
may reach, if both momentum components p, and p, vanish.

(IT) Negative heat capacity: Since the energy production
is positive, we set it equal to n(E, — E) for E < E,. The
energy loss we keep to be s. Then, dE/dt = n(E. — E) —
s for E<E,, and dE/dt = —s if E > E,.. Now the fixed
point E = E. — s/n is approached exponentially: E(t) =
E0) — (E. — s/n)(1 — e™™), if E < E_; otherwise it de-
creases linearly with ¢. Thus, the negative heat capacity
changes the bifurcation point E, + s/n of the unstable
case I into the fixed point E, — s/n of the stable model II.

Two-dimensional billiard with gravitation.—Next,
we construct a simple mechanical model, which consists
of a single classical particle (N = 1) moving in the (x, y)
plane, but confined to the region —V(y) <x < V(y),y >0,
where V > 0 is to be specified later. In addition, there is a
constant gravitational force in the y direction. In suitable
units, the Hamiltonian is

H=p2+y, (D)

which is positive in the allowed region. Figure 1 shows the
geometry and a short trajectory of the particle, which is
elastically reflected from the board V at the bottom. To
avoid negative x, the particle is also reflected at x = 0. We
demonstrate below that this model has a negative heat
capacity. Of course, for a single particle many thermody-
namic notions lose their meaning. Granting ergodicity,
however, the statements about time averages in the micro-
canonical ensemble still hold. Our results are readily
shown to carry over to an ensemble of ideal gas particles
[13]. This may serve to justify our thermodynamic termi-
nology also for N = 1.

If we denote the volume element in phase space,
dxdydp,dp,, by dw, the volume of the energy shell is

Q(E) = ] dwd(H — E) = fo Eom Vo), (@)

where the p integral supplies just 7. The entropy has to be
defined by the volume underneath the energy shell in order
to get the equipartition theorem:

eSE) = ﬁ) " aE(E) = ﬂ) “ay(E = V()

= fdw6(H — E)p?, 3)

and, thus, the microcanonical average of the kinetic energy
becomes the temperature:

€S(E)

@SB /ag) |
“4)

The following simple form of S leads to a negative heat
capacity for y > 1:

(p?) = ] dwd(H — E)p2/Q(E) =

S=E, T =dE/dS =S '""V/v1/y =E'"7/y,

&)
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dT/dE = —(1 — 1/y)E™Y <. (6)

v = 2 corresponds to the Bekenstein-Hawking thermody-
namics [11,12], but this form of S can be realized only in
our model for big E, since it requires ¢5® = 0. If V starts
as E“, a > 0, we have to add a term proportional to InE:

S=E” + (& + 2)InE.

This leads to S’ = yEY ' + (@ + 2)E ' and S = y(y —
1)E?"2 — (a + 2)E~2. Thus, for sufficiently large E we
still get S >0 and, thus, a negative heat capacity. The
form of the jumping board is determined by Eq. (3),

V(E) = d?/dE*(e5F)) = d?/dE*(E**? exp(EY))/,

which is positive as required. For y = 2 and a = 0, the
case closest to the black hole thermodynamics, we get

V(E) = (2 + 10E? + 4E*) exp(E?)/ .

Since E = y,.c, V may be viewed as a function of y,,, as
is shown in Fig. 1. Furthermore,

T=EQ+2E)"),
c=dE/dT = (2 —2E?)~'(2 + 2E?)2 <0 for E > 1.

In Fig. 2 we compare the theoretical dependence of the
temperature on the total energy (smooth line) with com-
puter simulation results (points). The regime of negative
specific heat, E > 1, is clearly visible. The fluctuations for
large energies are due to the difficulty to achieve ergodic-
ity. The intuition behind this example of negative heat
capacity was given in Ref. [14]. An increase of E opens
so much available space in the x direction, such that the
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FIG. 2. Dependence of the temperature on the total energy for
the mechanical jumping-board model. Simulation results
(points) are compared to the theoretical expression (solid line).
The number of computed jumps is gradually increased from 4 X
10%, for E = 0.8, to 40 X 10°, for E = 2.8.

volume of the energy shell increases more than exponen-
tially with E. This makes S”(E) > 0, which in turn implies
c <O0.

Purely attracting particles.—Finally, we consider a
two-dimensional system of N = 400 classical particles in
an elastically reflecting circle (radius R), which interact
with a short-ranged negative Gauss potential [15], v(r) =
—eexp{—r?/o?}. Here, r=|x; — x;| is the separation
between particles i and j, and x; € R%. For our numerical
work reduced units are used, for which the particle mass m,
the potential parameters € and o, and Boltzmann’s con-
stant k are unity.

The simulations are carried out in three steps.

First (equilibration) step: A homogeneous gas with a
particle density p = N/m(R/0o)* = 0.5, and with random
velocities is set up as the initial condition. The initial
temperature, Ty = YV | m;v?/k, is taken to be one. This
unstable state is propagated forward in time at a constant
energy E up to a time #; = 3000, at which the system is
close to equilibrium and consists of a single large cluster of
particles floating in a gas of the remaining particles. See
Fig. 3.

Two particles i and j are considered to be members of
the same cluster, if they are separated by less than o /~/2.
For the temperature of the largest cluster we take 7, =
Z/m(vi — v,.)?/k, where the sum is over all particles be-
longing to the largest cluster, and where v.. is its center-of-
mass velocity. The history of T, during the equilibration
step is shown by curve A in Fig. 4. One observes a steep
initial increase due to the formation of the main cluster,
until a stationary state is approached, which persists for
times ¢ > ¢ as shown. The corresponding total energy, E,
is constant (line A in Fig. 5).

Second (heating) step: For times t; <t < t,, t, = 4800,
the center of the cluster is heated by adding a friction term,
—{w(|x; — x.|)p;, to the equations of motion for particle i,

FIG. 3. Negative Gauss potential: typical particle configuration
at a time 7, = 3000. The particles are represented by circles with
a diameter equal to unity.
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FIG. 4 (color online). Time evolution for the temperature 7, of
the largest cluster. Line A belongs to the equilibration step,
line B to the heating step, and line C to the final heating-cooling
step.

X =v, v; = Fi/m = {w(lx; — x v,
with a negative friction constant / = —0.001. Here, F; is
the total force on 7, and v; is its velocity. The normalized
weight function w is centered on the center of mass of the
main cluster, x,., and has a cutoff radius 2 = 1 [16],

forr<h

S0+ 3)(1 = )
0 for r = h,

w(r) =

As a consequence of heating the cluster core, the energy of
the system is increased (curve B in Fig. 5). At the same
time, line B in Fig. 4 indicates that the temperature of the
main cluster decreases. This is a spectacular consequence
of the negative heat capacity of the system.

In the absence of any energy loss, the energy of the
system goes up until a transition energy is reached, at
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FIG. 5 (color online). Time evolution for the energy E of the
system. The lines A, B, and C refer to the respective equilibra-
tion, heating, and heating-cooling steps mentioned in the main
text.

which the cluster dissolves. For still higher energies, the
system behaves as an ideal gas with a positive specific heat,
for which the temperature increases with the energy. In our
simulation we avoid this phase transition by adding a loss
mechanism at time #,.

Third (heating+cooling) step: For times t > t, = 4800
and in addition to the heating, the system is also subjected
to a cooling process at the boundary, which is supposed to
mimic the radiation loss off a star. Whenever a particle is
reflected at the circular boundary, both of its velocity
components are reduced by 0.5%. As a consequence, the
total energy of the system drops again (line C in Fig. 5).
After some delay due to the weak gas particle—cluster
interactions, also the temperature of the main cluster re-
sponds and goes up again (line C in Fig. 4). The cluster
temperature eventually stabilizes at a very high level. This
nicely demonstrates how energy loss is responsible for
raising the cluster temperature again, pushing the unstable
matter towards a stationary nonequilibrium state with a
high cluster temperature 7.
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