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Michiel Snoek, Masudul Haque, S. Vandoren, and H. T. C. Stoof
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 1 June 2005; revised manuscript received 29 August 2005; published 13 December 2005)
0031-9007=
We propose a setup with ultracold atomic gases that can be used to make a nonrelativistic superstring in
four spacetime dimensions. In particular, we consider for the creation of the superstring a fermionic
atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the required
tuning of experimental parameters to achieve supersymmetry between the fermionic atoms and the
bosonic modes describing the oscillations in the vortex position. Furthermore, we discuss the experimental
consequences of supersymmetry.
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In recent years, three topics have, in particular, attracted
a lot of attention in the area of ultracold atomic gases.
These topics are vortices [1–5], boson-fermion mixtures
[6–10], and optical lattices [11,12]. In this Letter we
propose to combine these three topics to engineer a super-
string in the laboratory, i.e., a linelike quantum object with
both bosonic and fermionic excitations and a supersym-
metric Hamiltonian that is invariant under interchanges of
these excitations. The physics of a vortex line in a one-
dimensional optical lattice has been studied recently
[13,14]. Because of the optical lattice, the transverse quan-
tum fluctuations of the vortex line are greatly enhanced in
this configuration. The vortex can therefore be viewed as a
quantum mechanical string and it forms the bosonic part of
our superstring. In addition, we propose to trap fermionic
atoms in the vortex core, to make a nonrelativistic version
of a so-called Green-Schwarz superstring in four spacetime
dimensions. Because our ultracold superstring is nonrela-
tivistic, it is not constrained to the ten-dimensional space-
times in which superstrings are usually studied in high-
energy physics. The precise mathematical connection with
string theory is currently under investigation.

Apart from the connection to string theory, our ultracold
superstring is also of interest in its own right. To the best of
our knowledge, it is the first condensed-matter system pro-
posed where supersymmetry can be studied experimen-
tally. The intriguing possibility of observing effects of su-
persymmetry is common in high-energy physics, but novel
in a condensed-matter setting. In this particular case, the
supersymmetry protects the superstring from spiraling out
of the gas. This can be understood from the fact that the dis-
sipation resulting in this motion has two sources, namely,
the creation of two additional bosons in the transverse
oscillations of the vortex, and the production of an addi-
tional particle-hole pair of fermions. At the supersymmet-
ric point these two contributions interfere destructively and
the stability of the superstring is greatly enhanced. More-
over, the ultracold superstring allows for the study of a
quantum phase transition that spontaneously breaks super-
symmetry. Experimentally this will be directly visible by
observing the superstring spiraling out of the center of the
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gas. Note that supersymmetry can only be realized at zero
temperature and we consider only this case from now on.

To form the superstring we start with a cigar-shaped
Bose-Einstein condensate. The symmetry axis will be
called the z axis from now on. Rotation of the condensate
along the z axis creates a vortex. Above a critical external
rotation frequency �c a vortex in the center of the con-
densate is stable. For �<�c the vortex is unstable, but
because of its Euler dynamics, it takes a relatively long
time before it spirals out of the gas [3,15,16]. We analyze in
detail the case of � � 0, i.e., the situation in which the
condensate is no longer rotated externally after a vortex is
created. However, the physics is very similar for all �<
�c, where supersymmetry is possible.

Next a one-dimensional optical lattice is imposed.
Such an optical lattice consists of two identical counter-
propagating laser beams and provides a periodic potential
for atoms. When applied along the z axis of the condensate,
the optical lattice divides the condensate into weakly cou-
pled pancake-shaped condensates, each containing typi-
cally of the order of NB ’ 103 bosonic atoms. Moreover,
in the case of a red-detuned lattice, the Gaussian profile of
the laser beam provides also the desired trapping in the
radial direction. In the one-dimensional optical lattice the
vortex line becomes a chain of so-called pancake vortices.
Since the quantum fluctuations of the vortex position are
proportional to 1=NB [13], they are greatly enhanced in this
configuration as compared to the bulk situation. An added
advantage of the stacked-pancake configuration is the par-
ticlelike dispersion of the vortex oscillations, which ulti-
mately allows for supersymmetry with the fermionic atoms
in the mixture. Nearest-neighbor pancake vortices attract
each other due to the Josephson effect that is a result of the
hopping of atoms between neighboring wells of the optical
lattice. The stiffness of the vortex line is therefore deter-
mined by the hopping amplitude. The vortex oscillations
are bosonic excitations with a tight-binding dispersion
[13]. These excitations are known as Kelvin modes and
provide the bosonic part of the superstring. Without the
optical lattice Kelvin modes have already been observed
experimentally [17,18].
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For the fermionic degrees of freedom of the superstring,
we need to place a fermionic atomic species in the vortex
core. If the interspecies interaction between fermionic and
bosonic atoms is repulsive, the fermions can be made to
populate bound states in the vortex core where the boson
density is lowest. More precisely, the ratio aBF=aBB of the
boson-fermion scattering length and the boson-boson scat-
tering length needs to be sufficiently large. The trapping of
atoms in bound states within a vortex core has already been
achieved for atoms in a different hyperfine state [1,3]. The
presence of fermions within the vortex core, in principle,
provides a mass to the vortex. This modifies the Euler
dynamics, but this effect can safely be ignored under all
conditions of interest to us, because the ratio NF=NB of the
number of fermionic atoms and the number of bosonic
atoms per site turns out to be very small. The general
properties of our proposed system are summarized in
Fig. 1.

A convenient choice for the boson-fermion pair is 87Rb
and 40K, since such boson-fermion mixtures have recently
been realized in the laboratory [6–9] and because the
resonance lines in these two atomic species lie very nearby.
In this case, for typical bosonic densities, the ratio aBF=aBB

needs to be larger than 2 to have a bound state in the vortex
core. This is calculated by using the condensate density
profile as an effective potential for the fermions. The
interspecies scattering length can be made positive and
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FIG. 1 (color online). (a) Artist’s impression of the setup. The
disks represent the bosonic condensate density and the balls
(blue online) in the vortex core represent the fermionic density.
The black line is a guide to the eye to see the wiggling of the
vortex line that corresponds to a Kelvin mode. (b) Schematic of
the setup. Here r is the radial distance in the xy plane. The larger
oval (pink online) and smaller circular (blue online) blobs
represent the bosonic and fermionic densities, respectively.
Moreover, � is the wavelength of the laser. The lower (blue
online) and upper (red online) solid lines indicate the strength of
the optical potential, respectively, for the bosons and fermions as
a function of the z coordinate. (c) Schematic fine structure level
scheme of the bosonic and fermionic atomic species. Because we
consider only sufficiently large detunings the hyperfine level
structure is not resolved.
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large either by choosing the appropriate spin states or by
means of various broad Feshbach resonances that can make
the interaction repulsive while keeping the probability to
create molecules negligible [19]. The calculations pre-
sented in this Letter are for the 87Rb-40K mixture, but, in
principle, it is also possible to use other mixtures. Another
boson-fermion mixture that has been realized in the labo-
ratory consists of 23Na and 6Li atoms [10]. This mixture is
less convenient because the resonance lines are widely
separated, so that the two species feel very different optical
potentials and it is hard to trap both with a single laser. In
addition, 6Li is relatively hard to trap in an optical lattice
because of its small mass. For these reasons, the 23Na-6Li
mixture can only be used in a very restricted parameter
regime, as shown later in Fig. 2.

The laser intensity needs to be strong enough that
there is a bound state for the atoms at each site, but not
strong enough to drive the system into a Mott insulator
state [11,12,20], in which case the pancake vortices no
longer bind together. Given the frequencies of the D1

and D2 resonance lines !D1
and !D2

, respectively, the
optical potential for the atoms is given by VB;F�z� �
VB;Fcos2�2�z=��, where the well depths obey
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! � 2�c=� is the laser frequency, and �B;F are the Rabi
frequencies for the bosonic and fermionic atoms in the
mixture, respectively.

Because of the use of a single laser the fermionic and
bosonic atoms experience lattice potentials with the same
periodicity, but with different well depths (cf. Fig. 1(b)].
Ignoring their interactions, the fermionic atoms and the
Kelvin mode (kelvon) excitations now both have a tight-
binding dispersion 2J�1� cos�k�=2��, with hopping am-
plitudes JF and JK, respectively. Therefore, by making the
hopping amplitudes of the kelvons and the fermionic atoms
equal, the lattice laser can be tuned in such a way that the
kelvon and fermion dispersions coincide, which is a first
requirement for supersymmetry. For a sufficiently deep po-
tential the atomic hopping amplitudes are given by the ex-

act result JB;F�4�VB;F�
3=4�EB;F�

1=4 exp��2
��������������������
VB;F=EB;F

q
�=����

�
p

, where EB;F � 2�2
@

2=mB;F�
2 are the recoil energies

and mB;F are the atomic masses. The kelvon hopping
amplitude is given by JK � ��0; �‘=R�4�JB, where ‘ is
the radial harmonic-oscillator length for the bosonic atoms,
R is the Thomas-Fermi radius of every pancake, and ��0; z�
is the incomplete gamma function [13]. The ratio ‘=R is
determined by the number of bosonic atoms per site NB
and the strength of their repulsive interaction. One criterion
for supersymmetry is, therefore,

��0; �‘=R�4�JB � JF � t: (1)
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FIG. 3. Tuning of the additional laser to obtain supersymmet-
ric interactions for 1000 bosonic atoms per lattice site. The Rabi
frequency versus the wavelength of the running laser for differ-
ent wavelengths of the lattice laser beam: (1) 400 nm,
(2) 740 nm, (3) 850 nm, and (4) 1200 nm. See Fig. 2 for the
corresponding Rabi frequencies of the lattice laser beam.
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FIG. 2. Tuning of the lattice laser to obtain supersymmetry for
1000 bosonic atoms per lattice site: Rabi frequency for the bo-
sonic atoms versus wavelength for 87Rb- 40K (solid line) and
23Na- 6Li (dotted line). Note that for the blue-detuned part, i.e.,
� < 760 nm for the 87Rb- 40K mixture extra radial trapping is
needed, either magnetically, or by using an extra running laser as
discussed later in the text and shown in Fig. 3. In Fig. 3 we
display how to tune the running laser to obtain also supersym-
metric interactions. The numbers (1)–(4) indicate the parameters
for which this is calculated. The inset shows the average number
of fermions per lattice site. This depends linearly on the ratio of
the harmonic lengths in the axial and radial directions. This ratio
should be sufficiently small to be radially in the Thomas-Fermi
limit. For this plot a ratio of 1=5 is chosen.
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Fig. 2 indicates how to tune the wavelength and Rabi
frequency of the lattice laser to achieve this. Note that
we implicitly assumed that the fermionic hopping parame-
ter is independent of the presence of kelvons, which is
justified for the long wavelengths of interest, because then
the difference between the positions of the nearest-
neighbor pancake vortices is negligible with respect to
the core size.

A second requirement is that the chemical potential of
the kelvons is equal to the chemical potential of the fermi-
ons. Therefore, the filling factor of the fermions has to be
adjusted accordingly. Equating the chemical potential of
the kelvons and fermions we get

�K � �F �
@

2

2mBR
2 �1� ��0; �‘=R�4�� � �: (2)

From this we can derive that the average number of fermi-
ons per lattice site is given by NF�2arcsin�

�����������������
�F=4JF

p
�=�.

For typical parameters the number of fermions per lattice
site turns out to be of the order of 0.1, as shown in the inset
of Fig. 2. Tuning the system parameters to lie on the curves
in Fig. 2 makes the string supersymmetric. The system is
then invariant under unitary transformations of the bosonic
and fermionic excitations among each other.

In our superstring realization there are also boson-boson
and boson-fermion interactions. The kelvons interact re-
pulsively among each other when �<�c [14]. In addi-
tion, a repulsive interaction between the kelvons and the
fermionic atoms is generated by the fact that physically the
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presence of a kelvon means that the vortex core moves off
center, together with the fermions trapped in it. Because of
the confinement experienced by the trapped fermions in the
radial direction, this increases the energy of the vortex. The
kelvon-kelvon interaction coefficient is given by VKK �

���0; �‘=R�4�� 3
2�@

2=2NBmBR
2 � U [14], and the kelvon-

fermion interaction coefficient is found to be VKF �
CFR2=2NB. Setting these coefficients equal to each other
gives the third condition for supersymmetry, i.e.,

CF
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�
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2

�
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where CB;F are the spring constants associated with the
radial confinement of the bosonic and fermionic atoms,
respectively.

For the 87Rb- 40K mixture, supersymmetric interactions
require the ratio of the radial trapping potentials for the
bosonic and fermionic atoms to be large, of the order of
100. This cannot be achieved by a magnetic potential, since
the magnetic moment of the two species is almost the
same. To overcome this problem, we propose applying an
extra running laser beam along the z direction. The new
laser beam does not influence the one-dimensional poten-
tial wells, but it does change the radial confinement and can
therefore be used to tune the interaction terms to equal
values. In principle this second laser also introduces inter-
ference terms, but they turn out to be negligible, since they
oscillate faster than the atoms are able to follow. Hence, the
intensities of the two lasers can simply be added. The
detuning of the second laser has to be opposite to the
detuning of the first laser. For the second laser, we can
again independently choose both the wavelength and the
Rabi frequency as shown in Fig. 3. This can be used to
minimize the atom loss due to the red-detuned laser, but it
turns out that atom loss is always quite small anyway for
1-3



FIG. 4. The second-order Feynman diagrams describing the
dissipation processes due to the creation of (a) additional pairs of
bosonic and (b) fermionic excitations. The full lines correspond
to bosons and the dotted lines to fermions. Because the right
diagram contains a fermionic loop, it comes with an additional
minus sign and the two diagrams thus cancel exactly in the
supersymmetric case.

PRL 95, 250401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005
reasonable system parameters: at worst the lifetime of the
system is already 3 seconds.

Combining all these effects, our superstring is described
by the supersymmetric Hamiltonian

Ĥ ��t
X
hiji

�byi bj�c
y
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y
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�
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Here bi is the annihilation operator of a kelvon at site i, ci
is the annihilation operator of a fermion at site i, and hiji
means that the summation runs over neighboring sites.

Note that supersymmetry means that �Q̂;Ĥ � � 0, with
Q̂ �

P
ibic

y
i . For �<�c, the chemical potential is posi-

tive and the kelvons are thus unstable towards Bose-
Einstein condensation, which physically corresponds to
the tendency of the superstring to spiral out of the center
of the gas. The metastable superstring at the center can be
regarded as a system that is quenched deep into an ordered
phase, but is yet to move to equilibrium. The Bose-Einstein
condensation of kelvons corresponds to a quantum phase
transition that spontaneously breaks supersymmetry, which
manifests itself by the kelvon dispersion becoming linear
at long wavelengths. Thus our proposed system naturally
allows for a detailed study of the nonequilibrium dynamics
of supersymmetry breaking by monitoring the dynamics of
the superstring.

It is important to realize that if supersymmetry is un-
broken, i.e., the superstring is in a supersymmetric quan-
tum state, the kelvon and fermion modes should have the
same average occupation number, i.e., hbyi bii � hc

y
i cii.

Since the total number of fermions is conserved, the su-
persymmetry in this case protects the superstring against
dissipation, because the spiraling out of the superstring
would imply the creation of extra kelvons. This results in
a very long lifetime of the ultracold superstring, which can
also be understood theoretically as an exact cancellation of
the second-order Feynman diagrams describing the dissi-
25040
pation processes due to the creation of additional pairs of
bosonic and fermionic excitations, respectively, which are
shown in Fig. 4. In addition, the equality of the average
kelvon and fermion number allows us to devise an experi-
mental measure for the proximity to the supersymmetric
point. The number of kelvons hbyi bii can be obtained from
the number of bosonic atoms NB and the mean-square
displacement hr2i of the pancake vortices, which can be
measured by imaging along the z direction the size of the
circle within which the vortex positions are concentrated
[14]. The average fermion number hcyi cii � NF can be
determined by absorption measurements. Hence also the
quantity �hbyi bii � hc

y
i cii�

2 � �NBhr
2i=R2 � 1=2� NF�

2

can be measured. This quantity has an absolute minimum
of zero at the supersymmetric point, so that its magnitude is
a measure of the deviation from supersymmetry. The ex-
perimental precision that can be reached in approaching
the supersymmetric point will mainly be limited by the
uncertainty in the total number of fermions in the system.
Nevertheless, the observation of the effects of supersym-
metry in our setup should be in experimental reach with
existing technology.
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