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Human activity patterns display a bursty dynamics with interevent times following a heavy tailed
distribution. This behavior has been recently shown to be rooted in the fact that humans assign their active
tasks different priorities, a process that can be modeled as a priority queueing system [A.-L. Barabási,
Nature (London) 435, 207 (2005)]. In this Letter we obtain exact results for the Barabási model with two
tasks, calculating the priority and waiting time distribution of active tasks. We demonstrate that the model
has a singular behavior in the extremal dynamics limit, when the highest priority task is selected first. We
find that independently of the selection protocol, the average waiting time is smaller or equal to the
number of active tasks, and discuss the asymptotic behavior of the waiting time distribution. These results
have important implications for understanding complex systems with extremal dynamics.
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Several problems of practical interest require us to
understand human activity patterns [1–3]. Typical ex-
amples are the design of telephone systems or web servers,
where it is critical to know how many users would use the
service simultaneously. The traditional approach to char-
acterize the timing of human activities is based in two
assumptions: the execution of each task is independent
from the others, and each task is executed at a constant
rate [1–4]. A specific task, such as sending Email or
making phone calls, is then modeled as a Poisson process
[4], characterized by a homogeneous activity pattern. More
precisely, the time interval between two consecutive ex-
ecutions of a task follows an exponential distribution. An
increasing amount of empirical evidence is indicating,
however, that human activity patterns are rather heteroge-
neous, with short periods of high activity separated by long
periods of inactivity [1,5–11]. This heterogeneity is char-
acterized by a heavy tail in the distribution of the time
interval between two consecutive executions of the given
task [5,10,11].

In practice the execution of one task is not independent
of the others. Humans keep track of a list of active tasks
from where they decide what to do next, the selection of
one task implying the exclusion of the others. This picture
lead Barabási to model the task management by a human as
a queueing system, where the human plays role of the
server [5]. Queueing systems [12] have already received
some attention in the physics literature [13–16]. This
interest is motivated by the observation of a nonequilib-
rium phase transition from a noncongested phase with a
stationary number of active tasks to a congested phase
where the number of active tasks grows in time. In the
noncongested phase the mean waiting time before the
execution of an active task is finite. When approaching
the phase transition point the mean waiting time diverges,
while it grows with time in the congested phase.

The Barabási model belongs, however, to a new class of
queueing models with a fixed number of active tasks. In
this case the behavior of interest comes from the task
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selection protocol. In the extremal dynamics limit, when
the highest priority task is selected first, numerical simu-
lations and heuristic arguments show that most of the tasks
are executed in one step, while the waiting time distribu-
tion of tasks waiting more than one step exhibits a heavy
tail [5]. Yet, further research is required to obtain the
scaling behavior in the vicinity of this singular point.

In this work we obtain exact results for the Barabási
model, allowing us to prove previous conjectures based on
heuristic arguments and numerical simulations, and creat-
ing a solid background for future research. We calculate
the priority and waiting time distribution of those tasks
remaining in the list for the case of two active tasks. We
corroborate the observation of a singular behavior in the
limit when the task with the highest priority is selected
first, and derive the corresponding scaling behavior. We
also obtain an upper bound for the average waiting time,
which is independent of the selection protocol. Based on
this result we discuss the asymptotic behaviors of the
waiting time distribution. All the results presented here
were checked by numerical simulations, providing a per-
fect match with the theoretical curves.

Barabási model.—The Barabási model is defined as
follows. A human keeps track of a list with L active tasks
that he/she must do. A priority x � 0 is assigned to each
active task when it is added to the list, with a probability
density function (PDF) ��x�. The list is started at t � 0 by
adding L new tasks to it. At each discrete time step t > 0
the task in the list with the highest priority is selected with
probability p, and with probability 1� p a task is selected
at random. The selected task is executed, removed from the
list, and a new task is added. The control parameter p
interpolates between the random selection protocol at p �
0 and the highest priority first selection protocol at p � 1.

The numerical simulations indicate that the case L � 2
already exhibits the relevant features of the model [5].
Furthermore, if we focus on a single task, such as sending
Email, we can model the active tasks list as a list with two
tasks, one corresponding to sending Email and the other to
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FIG. 1. Old task priority distribution for the case of a uniform
new task priority distribution function, ��x� � 1 and R�x� � x in
0 	 x 	 1, as obtained from (4) (lines) and numerical simula-
tions (points). The case p � 0 corresponds with the random
selection protocol with R1�x� � R�x� � x.

PRL 95, 248701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 DECEMBER 2005
doing something else. Within this scenario the waiting time
coincides with the time between two consecutive execu-
tions of the corresponding task. Thus, the L � 2 case
provides us with a minimal model to study the statistical
properties of the time between the consecutive execution of
specific tasks.

Consider the Barabási model with L � 2. The task that
has been just selected and its priority reassigned will be
called the new task, while the other task will be called the
old task. Let ��x� and R�x� �

R
x
0 dx��x� be the priority

PDF and distribution function of the new task, which are
given. In turn, let �1�x; t� and R1�x; t� �

R
x
0 dx�1�x; t� be

the priority PDF and distribution function of the old task at
the tth step. At the �t� 1�th step, there are two tasks on the
list, their priorities being distributed according to R�x� and
R1�x; t�, respectively. After selecting one task the old task
will have the distribution function

R1�x; t� 1� �
Z x

0
dx0�1�x0; t�q�x0� �

Z x

0
dx0��x�q1�x0; t�;

(1)

where

q�x� � p�1� R�x�� � �1� p�
1

2
(2)

is the probability that the new task is selected given the old
task has priority x, and

q1�x; t� � p�1� R1�x; t�� � �1� p�
1

2
(3)

is the probability that the old task is selected given the new
task has priority x. In the stationary state, R1�x; t� 1� �
R1�x; t�, from (1) we obtain

R1�x� �
1� p

2p

�
1�

1

1� 2p
1�p R�x�

�
: (4)

To analyze this result let us consider its limiting cases.
When p! 0 (4) results in

lim
p!0

R1�x� � R�x�: (5)

Indeed, this limit corresponds to the random selection
protocol and, therefore, the priority distribution of old
tasks is equal to that of new tasks. On the other hand,
when p! 1 from (4) we obtain

lim
p!1

R1�x� �
�

0; x � 0
1; x > 0

: (6)

That is, �1�x� is concentrated around x � 0. This result
implies that in the limit p! 1 the new task will always be
selected for execution, resulting in a waiting time � � 1.
We are going to return to this result after computing the
waiting time distribution. The progression between these
two limiting cases is illustrated in Fig. 1, where we plot
R1�x� (4) as a function of x for a uniform distribution in
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0 	 x 	 1. As p increases from zero, R1�x� deviates more
from R�x�, resulting in a higher probability to obtain
smaller values of x. When p � 0:999, R1�x� grows to a
value of almost one in a very short x range close to x � 0,
approaching the limit distribution (6).

Next we turn our attention to the waiting time distribu-
tion. Consider a task with priority x that has just been
added to the queue. The selection of this task is indepen-
dent from one step to the other. Therefore, the probability
that it waits � steps is given by the product of the proba-
bility that it is not selected in the first �� 1 steps and that it
is selected in the �th step. The probability that it is not
selected in the first step is q1�x�, while the probability that
it is not selected in the subsequent steps is q�x�. The
integration over the new task’s priorities results in

P� �

(R
1
0 dR�x��1� q1�x��; � � 1R
1
0 dR�x�q1�x��1� q�x��q�x�

��2; � > 1
: (7)

Using (2)–(4) and integrating (7) we finally obtain

P� �

8<: 1� 1�p2

4p ln1�p
1�p ; � � 1

1�p2

4p ��
1�p

2 �
��1 � �1�p2 �

��1� 1
��1 ; � > 1

: (8)

Note that P� is independent of the ��x�. Indeed, what
matters for a task selection is its relative priority with
respect to other tasks, resulting that all dependences with
x in (2)–(4) and (7) appears via R�x�.

As before, let us consider the limiting cases. In the limit
p! 0 from (8) it follows that

lim
p!0

P� �
�
1

2

�
�

(9)

for � � 1. This limit corresponds with the random selec-
tion protocol, where a task is selected with probability 1=2
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on each step. In the other limit, p! 1, we obtain

lim
p!1

P� �
�

1�O�1�p2 ln�1� p��; � � 1

O�1�p2 �
1

��1 ; � > 1
: (10)

In this case, almost all tasks have a waiting time � � 1,
while the waiting time of tasks that are not selected in the
first step follows a power law probability distribution. This
picture is illustrated by a direct plot of P� in (8). In Fig. 2
we plot P� vs � for a uniform distribution in 0 	 x 	 1.
For p � 0:9 the probability distribution P� is dominated by
an exponential cutoff. This exponential cutoff can be de-
rived from (8) by taking the limit �! 1 with p fixed,
resulting in

P� 

1� p2

4

1

�
exp

�
�
�
�0

�
; (11)

where

�0 �

�
ln

2

1� p

�
�1
: (12)

When p! 1 we obtain that �0 ! 1 and, therefore, the
exponential cutoff is shifted to higher � values, while the
power law behavior P� 
 1=� becomes more evident. The
P� vs � curve systematically shifts, however, to lower
values for � > 1, indicating that this power law applies to
a vanishing task fraction [see Fig. 2 and (11)]. In turn,
P1 ! 1 when p! 1, as it is corroborated by the direct plot
of P1 as a function of p (see inset of Fig. 2).

Another characteristic magnitude of a queueing system
is the average waiting time of an active task before its
execution. For L � 2 we can calculate the average waiting
time directly from (8), obtaining
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FIG. 2. Waiting time probability distribution for the case of a
uniform new task priority distribution, ��x� � 1 and R�x� � x in
0 	 x 	 1, as obtained from (8) (pluses) and numerical simula-
tions (open symbols). The inset shows the fraction of tasks with
waiting time � � 1 as a function of p, as obtained from (8) (line)
and numerical simulations (points).
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h�i �
�

2; 0 	 p < 1
1; p � 1

: (13)

This average is restricted to those tasks that are executed
and, therefore, for p � 1 we are excluding the task that
remains indefinitely in the queue. As we show next, we can
extend this result for L> 2 using simple arguments.

On each step there are L task in the queue and one of
them is executed. Therefore,

Xt
i�1

�i �
XL�1

i�1

�0i � Lt; (14)

where �i is the waiting time of the task executed at the ith
step and �0i, i � 1; . . . ; L� 1, are the resident times of the
L� 1 tasks that are still active at the t step. From (14) it
follows that

h�i � lim
t!1

1

t

Xt
i�1

�i � L� lim
t!1

1

t

XL�1

i�1

�0i: (15)

For 0 	 p < 1 the numerical simulations indicate that
all active tasks are expected to be executed [5]. Therefore
h�0i 	 h�i and the last term in (15) vanishes when t! 1.
In contrast, for p � 1 the numerical simulations [5] indi-
cate that after some transient time the most recently added
task is always executed, while L� 1 tasks remain indef-
initely in the queue. In this case �0i 
 twhen t! 1 and the
last term in (15) is of the order of L� 1 when t! 1.
Based on these arguments we conjecture that the average
waiting time of executed tasks is given by

h�i �
�
L; 0 	 p < 1
1; p � 1

: (16)

This result was proved for L � 2 (13), and for L > 2 it is
corroborated by the numerical simulations (see Fig. 3). It is
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FIG. 3. Average waiting time of executed tasks vs the list size
for the case of a uniform new task priority distribution function,
��x� � 1 and R�x� � x in 0 	 x 	 1, as obtained from (16)
(lines) and numerical simulations (points).

1-3



PRL 95, 248701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 DECEMBER 2005
important to note that the equality in (15) is independent of
the selection protocol, allowing us to reach more general
conclusions beyond the Barabási model. Using (15) we
obtain

h�i 	 L: (17)

From this constraint it follows that P� must decay faster
than ��2 when �! 1. Thus, when �! 1 either

P� 
 a�
��; (18)

where a is a constant and �> 2, or

P� � ���f
�
�
�0

�
; (19)

where �0 > 0 and f�x� � O�bx��2�when x! 1, where b
is a constant. For instance, for the Barabási model with
L � 2 and 0 	 p < 1, � � 1 and f�x� decays exponen-
tially (11), in agreement with (19).

The empirical evidence is in favor of the second scenario
with� � 1 [5,10,11] or� � 3=2 [11,17]. This observation
is in agreement with our expectation of a natural cutoff. For
instance, we might go on a trip and not check Email for
several days, but sooner or later we are going to do it
because we receive and transmit important information
using this communication media. This cutoff time is ex-
pected to be more related to the necessity of performing a
given task rather than to the interaction with other tasks. In
this sense, the random selection of a task in the Barabási
model could be interpreted as a task whose priority sud-
denly increases to the maximum value because the need to
execute it after being on the queue for a long time. This
indicates future directions of research, considering the case
when the priority of old tasks may also change with time
[18].

The singular behavior of the Barabási model is a con-
sequence of the extremal dynamics rule: the task with the
highest priority is selected first. Therefore, the conclusions
obtained here are also relevant to other complex system
evolving with extremal dynamics [19–21]. In this more
general context the waiting time represents the lifetime
before selection, an important quantity in evolution models
[19,20] and optimization methods based in extremal dy-
namics [21]. Further research is required, however, to
determine the influence of other factors such as correla-
24870
tions among neighbors, which are absent in the Barabási
queueing model.
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