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Formation of spontaneous polarization in one-dimensional (1D) structures is a key phenomenon that
reveals collective behaviors in systems of reduced dimensions, but has remained unsolved for decades.
Here we report ab initio studies on finite-temperature structural properties of infinite-length nanowires of
Pb�Zr0:5Ti0:5�O3 solid solution. Whereas existing studies have ruled out the possibility of phase transition
in 1D chains, our atomistic simulations demonstrate a different conclusion, characterized by the
occurrence of a ferroelectric polarization and critical behaviors of dielectric and piezoelectric responses.
The difference is accounted for by the use of depolarizing effects associated with finite thickness of wires.
Our results suggest no fundamental constraint that limits the use of ferroelectric nanowires and nanotubes
arising from the absence of spontaneous ordering.
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Low-dimensional ferroelectrics (FE) are of considerable
importance because of the demand in nonvolatile FE mem-
ory and device miniaturization [1–3], and because of their
unusual properties that could be drastically different from
bulks [4–9]. One-dimensional nanowire (1D NW) is an
interesting system that bridges the 3D bulk ferroelectrics,
for which no depolarizing fields exist along any dimension
and possess at low temperature a ferroelectric ordering
with formation of spontaneous polarization [10], and the
0D nanoparticles, for which depolarizing fields exist
along all three possible dimensions and exhibit instead a
peculiar ordering with formation of toroidal moment [9].
Experimentally, it has become possible to fabricate 1D
ferroelectric nanowires and nanotubes out of different
substances such as Pb�ZrTi�O3, BaTiO3, SrTiO3, and
SrBi2Ta2O9 [11–14]. Theorywise, despite their obvious
technological implication, the properties of these 1D sys-
tems—in particular, the structural, dielectric, and piezo-
electric properties—remain unknown, which hampers the
understanding of these novel forms of ferroelectrics.

Another key question of fundamental relevance is
whether one-dimensional wires should exhibit any sponta-
neous ferroelectric ordering. The answer is not clear. On
the one hand, it has been amply proved using a variety of
statistical models that the 1D lattices with particle-particle
interaction decaying as or faster than r�3 are impossible to
have phase transformation at finite temperature [15–19],
thereby imposing a fundamental constraint that limits the
potential use of ferroelectric 1D nanowires and nanotubes.
This conclusion has been widely accepted and formulated
into a basic theory [20]. On the other hand, evidence of a
ferromagnetic ordering was recently reported in a one-
dimensional atomic chain on a metal supporting surface
[21], questioning the applicability of the existing phase
transition theory of 1D systems.

Here we investigate the fundamentals of phase transition
in 1D FE system as well as study their dielectric and
electromechanical properties, by means of two comple-
mentary techniques of (1) finite-temperature ab initio
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simulations on 1D wires made of Pb�Zr0:5Ti0:5�O3 (PZT)
solid solution and (2) analytical minimization of a free
energy applicable for a general 1D FE system. We dem-
onstrate that ferroelectric long-range ordering remarkably
exists, at finite temperature and under zero external fields,
in real 1D wires of diameter larger than 2 nm. The result is
in difference from what has been known from the statistical
models. Our results further show that the ordering in 1D
infinite wires does not form any toroid moment and bears
no similarity to the phase transition in 0D nanoparticles
[9,22]. As another key outcome of our study, we determine
the scaling law of the polarization in 1D systems.

Our simulations are based on a first-principle derived
effective Hamiltonian [23,24], in which total energy E is a
function of local modes ui, inhomogeneous strain vi, and
alloy species �i at site i, as well as homogeneous strain �,

E�fuig;fvig;f�ig;f�g��E
n�dip
VCA �fuig;fvig;f�g��E

dip
VCA�fuig�

�Ealloy�fuig;fvig;f�ig;f�g�; (1)

where the first two terms describe the nondipolar and
dipolar interaction between perovskite 5-atom cells in the
virtual crystal approximation (VCA), and the third term
includes the energy associated with species-dependent al-
loy interaction. Expressions for En�dip

VCA and Ealloy as well as
parameters for PZT were given in Ref. [25], and were
recently used for studying PZT nanoparticles [9]. The
effective-Hamiltonian approach has been proved to be
very successful in predicting the unusual low-symmetry
monoclinic phase of PZT [24,26] and the phase diagram of
BaTiO3 with the presence of quantum zero-point motion
[27]. The Hamiltonian in Eq. (1) was initially proposed for
3D bulks [23] and applicable to systems possessing peri-
odicity along all three dimensions (i.e., with no depolariz-
ing fields). To include the depolarizing energy due to
charges at the lateral surfaces of 1D systems, we formulate
a dual-space approach by using periodic Green’s function
G�r; r0�, for which the dipole energy Edip can be deter-
mined as [28]
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FIG. 1. Average local-mode displacements huii (upper panel)
and homogeneous strain � (lower panel) as a function of
temperature in the d � 15 wire. huii is in units of bulk lattice
constant a. The temperature is rescaled so that the theoretical Tc
of bulk PZT matches the experimental value of 640 K.
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FIG. 2. (a) Piezoelectric d33 coefficient and (b) dielectric �33

constant as a function of temperature for the d � 15 wire. The
coefficients of bulk PZT, where the d33 peak reaches a value of
740 pC=N, is also shown for comparison.
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where Rk (Gk) are the real (reciprocal) lattice vectors
along the z-axis wire direction, and h is the periodicity
along this direction. p��ri� is the � component of the
dipole at site ri. �1 is the dielectric constant, � the projec-
tion of r on the (x; y) plane, and K0�x� is the 0th-order
modified Bessel function of imaginary argument. Since the
function K0�x� decays exponentially at large x, the sum-
mations in Eq. (2) thus converge rapidly over Gk.

We study PZT wires of infinite length, mimicked by
means of periodicity along the longitudinal z axis but not
along the lateral x and y axes. Wires are chosen to be of
cylindrical shape with their x, y, and z axes along the
pseudocubic �100	, �010	, and �001	 directions of the pe-
rovskite structure, respectively. We have performed simu-
lations for a variety of diameters d, varying from 3 to 40,
while the z-axis periodic length h is chosen to be 14 (d and
h are in units of bulk lattice constant a � 4 �A unless
specified otherwise). We consider disordered PZT where
Zr and Ti are randomly distributed. Finite-temperature
Monte Carlo simulations with statistical convergence are
used to obtain local modes and dielectric and piezoelectric
properties.

Local mode (that is directly proportional to electrical
polarization) and homogeneous strain in a d � 15 NW are
shown in Fig. 1 as a function of temperature. The perhaps
most striking result is that the z component of the average
soft mode, huzi, sharply increases to nonvanishing values
below a critical Tc temperature which is found to be 610 K
for the studied wire, while the amplitudes of the other two
components huxi and huyi remain null. This signals that the
wire undergoes a phase transformation from a paraelectric
cubic phase into a tetragonal structure. The corresponding
homogeneous strain components, expressed in the Voigt
notation and measured with respect to the LDA-calculated
bulk cubic lattice constant, reveal that below the critical Tc
temperature �3 exhibits a steady increase, whereas the
components �1 and �2 continue to decrease. As a result,
the c=a ratio reaches a value of 1.020 at 10 K, which is
remarkably close to 1.024 found for the PZT bulk [25],
showing that the tetragonal strain does not deteriorate in
this 6 nm wire.

Figure 2 describes the piezoelectric d33 coefficient and
dielectric �33 constant, obtained from the statistical aver-
age of the response correlation function [29], as a function
of temperature for the d � 15 wire. Three most notable
observations are the following: (1) Both d33 and �33 re-
sponses show a sharp peak as temperature varies across Tc,
which further confirms the existence of phase transforma-
tion consistent with the formation of spontaneous ferro-
24760
electric ordering. (2) Interestingly, the peak widths of d33

and �33 curves are considerably smaller than those exhib-
ited by bulk PZT, which is rather surprising when one
recognizes the fact that thermal fluctuation is known to
be strong in low-dimensional structures than in bulk [20].
(3) At room temperature, the d33 coefficient of the wire is
predicted to be notably large at 
50 pC=N and, in fact, is
comparable to the value in bulk PZT. Our calculations
further reveal that the phase transition in 1D wires leads
to an enormous �33 peak value of 
10 000 [Fig. 2(b)].
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We next investigate how the critical Tc temperature
associated with the longitudinal z-axis FE ordering may
be tuned by varying the lateral diameter of wires. Our
results, depicted in Fig. 3(a), reveal two regimes for
which the Tc behaves very differently. For wires of large
diameter, Tc is nearly size independent and shows only
a marginal decrease with respect to bulk PZT. However, as
d is shrinked below the length of 11 bulk cells, Tc de-
creases dramatically in a completely different fashion, with
the slope @Tc=@d determined to be 15:5 K= �A. As a result,
the critical temperature in PZT wires is predicted to be
widely tunable by as much as 300 K, which is important
since it allows one to obtain very high dielectric and/or
electromechanical performances by controllably shifting
Tc to the room temperature at which devices normally
operate.

The sudden and drastic decrease of Tc in Fig. 3(a) can be
attributed to the possible existence of a threshold length for
the dipole-dipole correlation. One key difference between
FE wire and bulk is the dipoles at the wire surface.
However, effects of these surface dipoles are screened by
other dipoles within the correlation length. When the wire
diameter is smaller than the correlation length, the surface
dipoles cannot be fully screened and start to dominate in
affecting the ferroelectric properties, causing a sharp
change in Tc. Our calculations reveal this correlation
length to be around 44 Å. The existence of the dipole-
dipole correlation length also explains a similar plunge of
the transition temperature observed in PbTiO3 ultrathin
films [7] as well as the Tc behavior of the toroidal-moment
A phase reported in zero-dimensional nanodisks [9]. By
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FIG. 3. (a) Critical Tc temperature, and (b) magnitude of
polarization at 64 K, as a function of wire diameter. The
diameter is in units of Å (bulk lattice constant) for the upper
(lower) horizontal axis. The fitted result using the 1=d scaling
law is shown as a solid line in (b).
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revisiting the study of Ref. [9], the correlation length in
toroidal phase is found to be 52 Å, which agrees reasonably
well with the value in this study as one bears in mind that
the correlation depends on the dimensionality of the
system.

Let us now turn attention to the determination of the
scaling law for the polarization in 1D wires, by examin-
ing the z-axis polarization in different wires at a fixed
and low temperature of 64 K [Fig. 3(b)]. Two most im-
portant conclusions are evident. First, our simulations
show that the lateral size can be used to impose a sig-
nificant control over the magnitude of polarization.
Second, the polarization in 1D wires follows an inter-
esting scaling law of P � Pbulk � A=d, where A is pre-
dicted to be 5:592� 10�10 C=m. We further find that our
realistic Tc 
 P relation cannot be simply described by the
empirical formula of Tc � const� P� with � � 2.
Instead, Tc is proportional to P as d is larger than 11, but
behaves like P2:44 for the thinner NWs (i.e., � is size
dependent).

We have performed other simulations using different
periodic length h up to 200 bulk cells, which is the limit
of our computing power. We find that the above results
virtually do not change. Our results thus differ from the
statistical models that predict no phase transition in 1D
wires [16–19]. We now show, by examining the free en-
ergy and taking into account the entropy and depolarizing-
field effects as well as the parameters of real materials, that
the system length for disorder to appear in 1D wires is on
the order of millimeter, and the spontaneous ordering of
local dipoles that occurs in our simulations is thus a macro-
scopic and real effect.

First, it is important to realize that the polarization
perpendicular to the NWs is suppressed by the depolarizing
fields under the open-circuits boundary condition, and
local dipoles in NWs are thus allowed to be parallel or
antiparallel to the z-axis direction, which is further con-
firmed by examining the dipole pattern of our simulation
results. In other words, the disorder that may potentially
destroy the single-domain FE ordering is mainly due to the
180� domains, formed thermodynamically as well as with
the domain wall perpendicular to the z axis. Assume that
all domains have the same average length l, and let n be the
number of domains that exist within the wire length L.
Using the weak solution theory of Landau [20], the free
energy for 1D wires with the presence of domains can be
written as � � �0 � nkBT ln�na=L� � n �U, where
�0 is the thermodynamic potential, without allowance
for the existence of domains. The second term describes
the entropy contribution due to the appearance of domains,
while the third term is the domain-wall energy caused
mainly by the strain on the domain boundary. Surface
charges on 180� domain walls will also lead to a long-
range depolarizing field E, though it averages to zero over
the entire wire length. The energy U associated with this
depolarizing field is U � �n�P � E=2, where � �
�d2l=4 is the volume of each domain and P the volume
2-3
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polarization. For domains with length l� d, the depola-
rizing field can easily be obtained from a uniformly polar-
ized ellipsoid [30] with semiaxis s1 and radius s2 in the
limit s1=s2 ! 1, yielding E � �4��l=d��2 ln�2l=d�P.
The free energy is thus

� � �0 � nkBT ln
�
na
L

�
� n �

n�2d4P2

2l
ln
�
nd
2L

�
: (3)

Minimizing the free energy with respect to n, along with
the fact that (1) ln�nd=2L� is on the same order as ln�na=L�
and (2) domain-wall energy  > 0, results in the average
length lave of domain as

lave � �2d4P2=kBT: (4)

Adopting realistic parameters of d
 3 nm, P
 0:6 C=
m2, and T 
 300 K, we obtain lave 
 106 nm (this value
will further increase as T ! 0). This shows that the ferro-
electric ordering can exist over a macroscopic length scale
of 106 nm in 1D ferroelectric NWs, similar to the smectic
phase observed in liquid crystals [31]. The critical tem-
perature as predicted in our ab initio simulations thus
describes a transition from a paraelectric into a ferroelec-
tric phase within one domain.

Our studies provide new insights of phase transitions in
1D systems. First, our results demonstrate that phase tran-
sitions in 1D wires occur on a remarkable macroscopic
length scale, but not necessarily on an infinite length scale
as assumed in the general theories of 1D phase transition.
In reality, phase transitions in bulk FEs also occur on a
finite length scale. Our theories further yield quantitatively
that a large spontaneous polarization of the bulk magnitude
exists in 1D wires, showing that there are no fundamental
constraints on the technological use of novel ferroelectric
wires. Moreover, the large d33, �33 responses and the large
c=a strain as predicted in the present study are all previ-
ously unknown and difficult to obtain from the general
theories. The physical reason why thermal fluctuation in
FE NWs is less disruptive than previously thought is rather
simple. Results of the studies using spin-lattice models
[18,19] do not apply here because of the existence of
(strong) depolarizing fields arising from the truncation of
lateral dimension. In contrast, the depolarizing effects in
FE wires force the collective polarization to prefer along
the longitudinal direction, and the ordered phase is an
energy minimum stabilized by large surrounding energy
barriers.

We believe that our results will stimulate further work on
ferroelectric nanowires as well as the interest of utilizing
the polarization formed in these novel structures for tech-
nological purposes. The existence of ferroelectric phase
transitions with formation of spontaneous polarization also
points to the possible need of reformulating the phase
transition theory in one-dimensional systems.
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