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Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It
is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on
energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well
as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted
with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a
finite magnetic guide field are discussed.
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A Bernstein-Greene-Kruskal (BGK) mode is an exact
nonlinear solution of the Vlasov-Poisson system of equa-
tions. The original BGK solutions, obtained by Bernstein,
Greene, and Kruskal in a classic paper [1], represent exact
nonlinear plasma waves that do not experience any Landau
damping in a one-dimensional (1D) unmagnetized plasma.
If such a solution is stable, it can survive a long time in a
weakly collisional plasma. In the small-amplitude limit,
BGK solutions can be shown to reduce to singular Case–
Van Kampen modes [2,3], which are free of Landau damp-
ing. Although Case–Van Kampen modes are singular, the
exact BGK wave solutions from which they are derived by
a small-amplitude expansion are perfectly well-behaved.

BGK modes have been observed experimentally in qua-
sineutral [4,5] as well as trapped pure electron plasmas [6].
Numerous space-based observations of solitary waves or
phase space hole structures in the magnetosphere [7–11]
and the solar wind [12], which are seen to persist as non-
linear structures, have been interpreted as BGK modes
[13,14]. Numerical simulations seem to suggest that stable
1D nonlinear modes of the BGK type can be formed
dynamically via a two-stream instability [15]. See
Ref. [16] for a recent review of 1D BGK theory.

Surprisingly, there appear to have been very few theo-
retical attempts to construct exact BGK solutions analyti-
cally in two and three dimensions (2D and 3D). In recent
years, there has been renewed interest in 3D BGK modes,
motivated mainly by distinct 3D features of solitary wave
structures in space-based observations that cannot be ex-
plained by 1D theory [8–10]. For instance, it has been
found that electrostatic solitary waves observed in the
auroral ionosphere are characterized by electric field com-
ponents E? perpendicular to the background magnetic
field with magnitudes comparable to the parallel compo-
nent Ek [8]. Recently, 3D BGK solutions have been con-
structed under the assumption of an infinitely strong
background magnetic field [17–19] or a sufficiently strong
magnetic field so that one can use some form of the
gyrokinetic or drift-kinetic equation [20,21]. The infinitely
strong field constrains charged particles to move along
magnetic field lines like beads on a wire and, thus, effec-
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tively reduces the 3D problem to a 1D problem [17–19].
Despite such a strong assumption, this theory has gener-
ated interest for further development and comparison with
observation data [21]. However, efforts to relax this as-
sumption to magnetic fields of finite strength have not
produced exact results so far, and it has been conjectured
that a 3D BGK solution for zero magnetic field does not
exist [17].

In this Letter, we develop a simple but rigorous approach
in constructing BGK solutions in 3D. We demonstrate that
2D and 3D solutions in which the particle distribution
function f is assumed to depend only on energy do not
exist, consistent with the conjecture in Ref. [17]. However,
we show that, if we allow f to have dependencies on
additional constants of motion (such as the angular mo-
mentum), BGK solutions do exist in 3D. We prove this by
actually constructing a class of exact 3D BGK solutions in
an unmagnetized, spherically symmetric plasma. We then
discuss briefly how our approach may be extended to
obtain solutions with cylindrical symmetry, with or without
a magnetic field of finite strength.

We start with the Vlasov equation for each species s of
the plasma with mass ms, charge qs, and distribution
function fs�r; v; t� as a function of space, time, and veloc-
ity. We consider nonlinear electrostatic waves, so that the
electric field can be represented as the gradient of a scalar
electric potential  �r�, that is, E � �r . The relevant
Vlasov-Poisson system of equations describing stationary
electrostatic waves is

v �
@fs
@r
�
qs
ms
r �

@fs
@v
� 0; (1)

r2 � �4�
X
s

qs
Z
dvfs: (2)

For simplicity, we assume that the much more massive ions
form a uniform background with constant density n0 and
solve only for the electron distribution. Using the normal-
izations v! vev, r! �r,  ! 4�n0e�2 , and fe !
n0fe=v3

e, where ve is the electron thermal velocity and � �
ve=!pe is the electron Debye length, (1) and (2) become
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FIG. 1. Schematic illustration of the role of electron angular
momentum in realizing 3D BGK solutions. The radial electric
field provides the centripetal force necessary to sustain the
circular electron motion.
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v �
@f
@r
�r �

@f
@v
� 0; (3)

r2 �
Z
dvf� 1; (4)

where we have dropped the subscript e on the electron
distribution function. It is easy to see that (3) is satisfied
exactly by a distribution function of the form f � f�w�,
where w � v2=2�  �r� is the energy. However, in order
to be a truly self-consistent solution of the Vlasov-Poisson
system, a distribution function of the form f � f�w� must
also satisfy (4). We now present a simple proof that no such
solutions exist in 2D and 3D.

In 2D, (3) and (4) give n � r2 � 2�
R
1
� dwf�w� �

1. It follows that dn=d � 2�f�� � � 0. The derivation
of a similar relation in 3D is technically a bit more involved
but straightforward. We first define a 1D reduced distribu-
tion

g
�
v2
z

2
�  

�
� 2�

Z 1
0
v?dv?f

�
v2
?

2
�
v2
z

2
�  

�
; (5)

where v? is the velocity component perpendicular to the z
direction. It follows from definition (5) that g�w� �
2�

R
1
w d�f���, and, hence, g0�w� � �2�f�w� 	 0.

Using these properties of g, we can write

n � r2 �
Z 1
�1

dvzg
�
v2
z

2
�  

�
� 1 (6)

so that

dn
d 
� �

Z 1
�1

dvzg0
�
v2
z

2
�  

�
� 0: (7)

The inequality dn=d � 0, which holds in 2D as well as
3D, leads to the conclusion that it would be impossible to
obtain a physical and localized solution that satisfies the
boundary conditions  ! 0 and n! 0 as jrj ! 1. The
reasons are as follows. For such a localized solution,  
must have either a local maximum that is positive or a local
minimum that is negative at a certain point in space.
However, since n � r2 is negative (positive) in these
two cases, then according to the inequality dn=d � 0, n
must be increasingly negative (positive) as  decreases
(increases) from its local maximum (minimum). It would
thus be impossible to satisfy the boundary conditions  !
0 and n! 0 as jrj ! 1 simultaneously, required for a
localized solution.

We now demonstrate that it is possible to construct 3D
solutions if we relax the restriction that the distribution
function depends only on energy. Let us consider the case
in which the electrostatic potential is spherically symmet-
ric, that is,  �  �r�. The distribution function will then
have the form f � f�r; vr; v?�, where v2

? � v2
� � v

2
�, and

�r; �; �� are the usual spherical coordinates. With these
simplifications and coordinate transformations, (3) and (4)
become [22,23]
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We first look at a simple, exact solution of (8) and (9) that
illustrates the essential physics of such solutions. It can be
shown by direct substitution that the distribution function

f � g�r���vr��
�
v2
? � r

d 
dr

�
(10)

satisfies (8), where g�r� is an arbitrary positive function.
We assume that d =dr 	 0. As shown in Fig. 1, this
solution represents a situation in which electrons move in
circular orbits around a spherically symmetric positive
electrostatic potential with the electric field always point-
ing radially outwards and the attractive electric force on
any electron balanced by its centripetal acceleration.
Equation (9) then requires that

1

r

d2�r �

dr2 � �g�r� � 1: (11)

There are many solutions  �r� that result in a positive g�r�,
with d =dr 	 0. As an example, we consider  �r� �
 0 exp��r2=�2�. Then the requirement that g�r� be posi-
tive yields the condition �2 > 6 0, which restricts the
width-amplitude relation of the electrostatic potential.
For a more detailed discussion of other such width-
amplitude inequalities that are relevant to observations in
space, the reader is referred to Ref. [14].

The simple example discussed above shows that, if we
can arrange electrons to circulate around the potential and
to allow dependence on angular momentum, it becomes
possible to construct 3D solutions. We now consider a
more general solution of (8), f � f�w; l�, where l � v?r
is the angular momentum. [It can be shown that the special
solution in Eq. (10) can be put into this form implicitly,
4-2



FIG. 2. (a) Numerical solution  �r� for the case with h0 � 0:9
and x0 � 1. (b) The same solution in log-log plot. The dashed
line shows the relation  �r! 1� !  1=r

2. (c) Radial electric
field. (d) Normalized charge density �q�r� � 1� e h�r�.

FIG. 3. Same as in Fig. 1 for the case h0 � 1:1 and x0 � 1.
The profiles are nearly identical as those in Fig. 2 except that the
signs are reversed.
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after taking into account the delta functions.] The next step
is to find specific solutions of this form that also satisfy (9).
For simplicity, we consider solutions of the separable form
f�w; l� � �2���3=2 exp��w�f1�l�. Since we are looking for
a solution localized in r, we impose the boundary condition
that, as  ! 0, the distribution function must tend to a
Maxwellian, that is, f ! �2���3=2 exp��w�. Hence, f1 !
1 as r! 1. For specificity, we choose

f1�v?r� � 1� �1� h0� exp��v2
?r

2=x2
0�; (12)

with two real parameters h0 and x0. We note that f1�0� �
h0 � 0, and f1�1� � 1. Equation (9) then becomes

1

r

d2�r �

dr2 � e h�r� � 1; (13)

where we obtain by direct integration h�r� � �h0 �
2r2=x2

0�=�1� 2r2=x2
0�. Equation (13) is a second-order

nonlinear ordinary differential equation for  �r�, to be
solved subject to the boundary conditions  �r! 1� !
0,  �r � 0� �  0, and  0�r � 0� � 0. For the special
case h0 � 1, it follows that f1 � h � 1 for all r. Then
the distribution function depends only on energy, in which
case, by our discussion above, there is no nontrivial solu-
tion. That this is so can also be seen from (13), which yields
only the trivial solution  �r� � 0 if h � 1. If this were not
so, then for any nonzero positive (negative) value of  0,
 �r! 1� will tend to positive (negative) infinity, which
violates the boundary condition as r! 1.

We now demonstrate, by an extension of the argument
given above, that when h0 � 1, a well-behaved solution
must exist for a certain  0. First, we note that if 0 	 h0 <
1, for  0 > ln�1=h0�,  �r! 1� ! 1. Second, for suffi-
ciently small  0, including all negative  0,  will become
negative at some point, leading to  �r! 1� ! �1.
Therefore, we see that there must exist a value of  0 in
between these two cases that satisfies the required bound-
ary condition  �r! 1� ! 0. Stated differently, Eq. (13),
subject to the boundary condition  �r! 1� ! 0, is an
eigenvalue problem for  0 that can be solved numerically.

Figure 2(a) shows the solution  �r� for the case with
h0 � 0:9 and x0 � 1. The same solution is plotted on log-
log scale in Fig. 2(b), showing the asymptotic behavior of
 �r! 1� !  1=r

2 for a constant  1. In fact, by directly
substituting this asymptotic form into (13), the value of  1
is found to be  1 � x2

0�1� h0�=2. This also means that the
electric field has the asymptotic behavior E�r! 1� !
2 1r=r4. Since the electric field falls off faster than
1=r2, the global solution is asymptotically charge-neutral.
We plot the radial electric field in Fig. 2(c) and the nor-
malized charge density �q�r� � 1� e h�r� in Fig. 2(d).
Careful inspection shows a long tail for �q moving from
positive to negative values at around r
 2:7.

For the case h0 > 1, we can demonstrate similarly that
there must exist a negative  0 that satisfies the required
boundary condition  �r! 1� ! 0. Figure 3 shows the
solutions when h0 � 1:1 and x0 � 1, which are very simi-
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lar to the solutions represented in Fig. 2 except that their
signs are reversed. This is an interesting case because a
negative potential is supported in 3D entirely by electron
dynamics. It would be impossible to realize such a solution
in 1D, since all electrons in such a potential will have
passing trajectories that will tend to infinity, where the
distribution must be a Maxwellian. This will not support
a localized BGK solution with negative potential. The only
way a localized BGK solution with negative potential can
be supported in 1D is by taking into account the dynamics
of trapped ions.

It is interesting to determine the relation between the
potential  0 and the characteristic length x0. Figure 4
shows the plots of  0 vs x0 for various values of h0. For
large x0,  0 simply tends to ln�1=h0�. As x0 ! 0, we see
that  0 ! 0. In this limit, the functional dependence is
very similar to that of  1, except that it has a larger
numerical coefficient, that is,  0 
 8x2

0�1� h0�. We note
that even in this limit the solution itself as well as the
potential  cannot be recovered by solving the linearized
4-3



FIG. 4. Plots of  0 versus x0 for various values of h0 from 0.1
(top curves) to 0.9 (bottom curve) in increments of 0.1. The
dashed line is  0 � 8x2

0�1� h0� for h0 � 0:1.
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Vlasov equation, since the velocity gradient of f is large
around v? ! 0. In other words, this is a truly nonlinear
solution even in the small-amplitude limit.

We remark that the width-amplitude inequality based on
these solutions is very similar to that given in Ref. [14],
which has been shown to be consistent with observations.
The feature that the electrostatic potential of these 3D
solutions is typically single-humped in all directions is
consistent with observations [13] that solitary waves in
the auroral ionosphere are bipolar in the parallel electric
field Ek and unipolar in both components of perpendicular
electric field E?. It is interesting that these features are
realized even without including the background magnetic
field in our solutions.

We should emphasize that the solutions presented here
are a few among many, chosen to illustrate the principles of
our approach. One major extension of our approach will be
the inclusion of possible piecewise distribution functions
distinguishing trapped and passing electrons. Such distinc-
tion is not made in the solutions presented here, nor are
they necessary, because we are able to describe the whole
distribution function with a single continuous and smooth
function. This should be contrasted with the 1D case,
where the distinction between trapped and passing parti-
cles must be made in order to construct a solution.

Finally, we discuss briefly the possibility of relaxing the
above spherically symmetric case to the cylindrically sym-
metric case with  �  ��; z�, f � f��; z; v�; v�; vz�. For
generality, we also include a uniform background magnetic
field B � Bẑ. The Vlasov equation can then be solved by a
distribution function of the form f � f�w; 2�v� � B�2�.
To find a BGK solution, one then needs to solve the Poisson
equation self-consistently. The result is a partial differen-
tial equation for  in two variables instead of the ordinary
differential equation in (13), and, thus, substantially more
analysis is needed to discuss its solution. Therefore, we
will defer that to a later publication.

In summary, we have shown that a 3D BGK solution can
be constructed in an unmagnetized plasma if and only if the
24500
distribution function is not only dependent on energy but
also on other constants of motion such as the angular
momentum. We have constructed a class of such solutions
and analyzed their functional form, as well as their
amplitude-width relation. We have not considered the dy-
namical accessibility and stability of such solutions, which
is likely to require large-scale numerical simulations. This
is left to future investigation.
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