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Collisionless Reconnection in an Electron-Positron Plasma
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Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional
electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm’s law in
which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this
plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce
an effect analogous to a spatially localized resistivity.
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The conditions under which collisionless plasmas ex-
hibit fast nonlinear reconnection have been a dominant
subject of research over a few decades. Under standard
approximations, collisionless hydrogen plasmas, consist-
ing of electrons (of mass me and charge �e) and protons
(of mass mi and charge e), can be shown to obey the
generalized Ohm’s law
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discussed in textbooks [1], where E is the electric field, B
is the magnetic field, v is the plasma flow velocity, c is the
speed of light, J is the current density, Pe is the electron
pressure tensor, and n is the electron and ion densities. In
recent years, it has been shown, primarily by means of
simulations based on fluid, hybrid as well as particle-in-
cell (PIC) methods, that the Hall current and electron
pressure terms in the generalized Ohm’s law (1) play an
important role in realizing fast reconnection. It has been
suggested that this is because of a separation of spatial
scales between electron and ion flows, which, in turn,
causes a separation of scales between the thin current sheet
and the reconnection electric field produced in the recon-
nection layer. Whereas electrons contribute primarily to
the current density in the thin current sheet, which has a
characteristic width of the order of the electron skin depth,
ions decouple from electrons over a broader spatial scale of
the order of the ion skin depth (when the equilibrium guide
field is zero), and control the reconnection rate. It has also
been suggested that there is a strong link between fast
reconnection and the excitation of whistler waves pro-
duced by the Hall current at small scales [2,3]. Unlike
Alfvén waves, whistler waves have a dispersion relation
that depends quadratically on the wave number, and hence
their phase velocity increases linearly with increasing wave
number (or decreasing spatial scale).
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In this Letter, we study the problem of fast reconnection
in electron-positron (or pair) plasmas. There has been
growing interest in pair plasmas for their applications to
astrophysical as well as laboratory plasma physics. Im-
portant astrophysical applications include extragalactic
jets [4,5] and winds and jets from pulsars [6]. It has been
suggested that such winds are ‘‘magnetically striped’’ [7],
that is, they are composed of compartments of magnetic
fields of alternate sign, where magnetic field reconnection
and annihilation convert magnetic energy into particle
energy. Recent laboratory experiments of electron-positron
plasmas have offered significant new insights into beam-
plasma instabilities [8,9], and new experiments on mag-
netically confined toroidal devices are under way [10].
Earlier analytic and simulation studies of pair plasmas
have focused on issues of particle acceleration [11–13].

In addition to the various applications mentioned above,
studies of magnetic reconnection in electron-positron plas-
mas present a new opportunity to examine critically the
question of the ingredients that are essential in realizing
regimes of fast magnetic reconnection. In a pair plasma,
the electron and ion skin depth parameters are identical.
We demonstrate, by means of PIC simulations, that fast
reconnection occurs in a pair plasma without a separation
of spatial scales between electron and positron flows, and
without the intervention of the Hall current which cancels
out exactly in the generalized Ohm’s Law. Because of this
cancellation, whistler waves do not exist in pair plasmas
[14–16]. Despite the absence of the Hall current and
whistler waves, our numerical results provide clear evi-
dence of fast collisionless reconnection due to the local-
ization caused by the off-diagonal components of the
pressure tensors, which produce an effect analogous to a
spatially localized resistivity.

We begin with a simple derivation of the generalized
Ohm’s law for collisionless pair plasmas. The momentum
equation for the ion and electron fluids is given by
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FIG. 1 (color). Contour plots of � and Ey for Ti=Te � 1.
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where qi � e, qe � �e. Multiplying the positron equation
by me, the electron equation by mi, and subtracting the
second from the first, we obtain
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where we have assumed quasineutrality, that is ne � ni �
n, and used the exact relations me � mi, vi � v� J=2ne,
and ve � v� J=2ne. If we compare (1) with (3), we see
readily that the Hall current term has cancelled out exactly
in (3). However, the mechanisms that break field lines in a
collisionless pair plasma are similar to those in a hydrogen
plasma, namely, finite particle inertia and the pressure
tensor. What is different in a pair plasma is the absence
of scale separation between the electron and the positron
skin depth.

To investigate whether a collisionless pair plasma can
exhibit fast reconnection, we carry out electromagnetic
PIC simulations using an initial condition similar to the
geospace environmental modeling (GEM) reconnection
challenge [17]. The plasma is assumed to be in a Harris
equilibrium in the x-z plane with no equilibrium guide field
(By � 0). The magnetic field Bx and the particle number
density n are given, respectively, by Bx � B0 tanh�z=a�,
and n � n0 sech2z=a� nb, where B0, n0, and nb are posi-
tive constants. The asymptotic magnetic field B0 and the
particle density n0 satisfy the equilibrium condition
B2

0=8� � n0�Te � Ti�. In equilibrium, the positrons (elec-
trons) have drift velocities �di��de� in the y direction, and
obey the relations j�di � �dej � �2c=aeB0��Te � Ti� and
�de=�di � �Te=Ti. Most of the parameters chosen are
similar to those for the GEM challenge: the background
density nb � 0:2n0, the ratio of the Alfvén velocity �Af�
B0=��4�n0�mi �me�	

1=2g to the speed of light c is �A=c �
1=20, the thickness of the current sheet a is 0:5di, where
di � c=!pi is the positron skin depth, and !pi �

�4�n0e
2=mi�

1=2 is the positron plasma frequency. We con-
sider two values of the temperature ratio, Ti=Te � 5, which
is the same as that of the GEM challenge, and Ti=Te � 1.
The total number of particles for each species is 3 725 056.
Our time step is specified by the choice!pi�t � 0:02. The
simulation domain has Lx � Lz � 512� 256 grid points.
In this system, di � 20�, where � is the grid spacing. We
use periodic boundary conditions along x, with the bounda-
ries located at x � �Lx=2 and x � Lx=2. The z bounda-
ries, z � �Lz=2 and z � Lz=2, are assumed to be
conducting walls.

In this two-dimensional problem, the magnetic field can
be represented as B� ŷ�r��x;z;t��By�x;z;t�ŷ, where
��x; z; t� is a flux function. We now disturb this equilib-
rium at t � 0 by imposing a large perturbation �1 �
0:1B0di cos�2�x=Lx� cos��z=Lz�. The imposition of a
large perturbation enables the realization of a nonlinear
24500
quasisteady state quickly. In what follows, we present
results from three cases: (a)mi � me, Ti=Te � 5, (b)mi �
me, Ti=Te � 1, and (c) mi � 25me, Ti=Te � 5.

We begin with case (b). Figure 1 shows contour plots for
the magnetic flux function � at the time �it � 10:7 and
�it � 17:7, and the out-of-plane electric field Ey at the
time �it � 17:7, when the reconnection electric field Ey
attains its maximum value 0:24B0�A=c. (Here �i is the
positron cyclotron frequency in the asymptotic equilibrium
magnetic field B0.) It turns out that this value is similar to
that of the GEM challenge reconnection electric field,
which lies in the range 0:2
 0:3B0�A=c. (See [17] and
companion papers that use PIC and Hall MHD simula-
tions.) At �it � 17:7, the system shows evidence of sec-
ondary tearing instabilities of the current sheet. Figure 2
(red curve) shows the time history of reconnection electric
field Ey at the central X point. [For this plot, Ey was
spatially averaged over 20� (x direction) �10� (z direc-
tion) around the X point, and temporarily averaged over
250�t�� 0:67��1

i �.] We note that already at �it � 10:7,
the reconnection electric field Ey has attained the large
value of 0:1B0�A=c (which is of the same order as the
GEM value), without the intervention of secondary tearing
instabilities. The field Ey at the X point eventually reaches
its maximum value, 0:24B0�A=c at �it � 17:7, after
which it gradually decays.

To delineate more clearly the role of secondary tear-
ing instabilities, we perform two other simulations and
plot the results for Ey in Fig. 2. The first (blue curve)
uses a system of low aspect ratio, Lx=Lz � 1�Lx � Lz �
256� 256 grid points�, and uses the initial perturba-
tion �1 � 0:01B0di cos�2�x=Lx� cos��z=Lz� to initiate
reconnection, while the other (black curve) uses a system
1-2



FIG. 2 (color). Time evolution of Ey at the X point for Ti=Te �
1: (red) �1 � 0:1B0di and Lx=Lz � 2, (blue) �1 � 0:01B0di
and Lx=Lz � 1, (black) �1 � 0 and Lx=Lz � 2.
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of higher aspect ratio, Lx=Lz � 2�Lx � Lz � 512�
256 grid points�, and starts from noise, with �1 � 0. In
the low-aspect-ratio case, the secondary tearing instability
is absent, while in the case of higher aspect ratio evolving
from noise, secondary tearing instabilities are seen to
develop early. Despite these differences, the maximum
reconnection rate attained in the two cases are not very
different, providing further evidence for our claim that the
realization of a large reconnection electric field in pair
plasmas does not depend primarily on the excitation of
secondary tearing instabilities.

We now investigate the structure of the By field in the
quasisteady regime. In standard hydrogen plasmas, the
self-generated By field is well known to have a quadrupolar
structure, attributed to the scale separation between elec-
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FIG. 3 (color). Contour plots of By=B0: (a) mi � me, Ti=Te �
5 (b) mi � me, Ti=Te � 1 (c) mi � 25me, Ti=Te � 5.

24500
trons and ions. Figure 3 shows the By field in the quasis-
teady nonlinear regime for three cases: (a), (b), and (c).
Figure 3(c) shows clear quadrupolar structure. Whereas
Fig. 3(a) for pair plasmas shows evidence of a self-
generated By due to the different electron and positron
flows in the x-z plane when Ti � Te, it does not exhibit
quadrupolar structure. On the other hand, Fig. 3(b) for
equal-temperature pair plasmas shows little By-field gen-
eration. These findings on pair plasmas are qualitatively
different from the results obtained for hydrogen plasmas
[Fig. 3(c)].

The top panel of Fig. 4 shows a plot of the reconnection
electric field Ey along a straight line parallel to the z axis
through the central X point. It is clear by inspection of
Fig. 4 that the reconnection electric field is supported by
contributions from the electron and positron pressure ten-
sors and convective nonlinearities, and that contribution of
the pair pressure tensor is localized in the vicinity of the X
point.

We denote the electric field from the nonideal MHD
terms in the generalized Ohm’s law [the right-hand side of
(3)] as E�y. In the middle panel of Fig. 4, we plot E�y and the
current density Jy. The similarity in the spatial profiles of
E�y and Jy suggests the definition of an effective enhanced
resistivity �� � E�y=Jy, localized in the diffusion region,
with the spatial profile given in the bottom panel of Fig. 4.
We propose that the notion of this effective resistivity, ��,
localized in the diffusion region, provides an explanation
for the realization of the X-type geometry and fast recon-
nection of the Petschek type [18] in pair plasmas.
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FIG. 4 (color). (top) Ey along a line through the X point for
Ti=Te � 1, (middle) E�y and Jy, (bottom) the ratio E�y=Jy in the
diffusion region.
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The physical origin of the effective resistivity can be
understood at a microscopic level by a consideration of
particle orbits. Because of the strong gradient of the mag-
netic field around the X point and the breakdown of adia-
batic invariants, the particle motion becomes chaotic. As
particles travel to the X point, they are accelerated in the y
direction by the electric field Ey. After acceleration for a
finite time during which the particles experience random
kicks from the electric field, the particles are eventually
expelled to the downstream region. This finite confinement
time in the diffusion region produces an effective colli-
sionless resistivity [19,20]. The resistivity at the X point
can be estimated heuristically by the expression �� �
mi=�nme2��, where nm is the density at z � 0 and � is
the acceleration time. Using the estimate � � d=�zd [20],
where d is the half-width of the diffusion region and �zd
is the inflow speed at z � d, and substituting values ob-
served in the simulation, that is, �zd 
 0:22�A, d
 1:8di,
and nm 
 0:46n0, we obtain �� 
 0:19�mi�i=n0e2�.
If we multiply Jy 
 1:4n0e�A by ��, we obtain Ey 

0:27B0�A=c, in agreement with the observed value.

In conclusion, we have simulated collisionless recon-
nection in an electron-positron plasma, and demonstrated
fast reconnection rates, of the same order as those obtained
in the GEM reconnection challenge. We demonstrate that
the Hall current term, which is associated with scale sepa-
ration between electrons and ions and whistler waves in a
conventional hydrogen plasma and is widely believed to
facilitate fast reconnection, is not necessary for fast recon-
nection in a pair plasma. The quadrupolar magnetic field
pattern, which is often used as an observational proxy for
collisionless reconnection in a conventional plasma, is
absent in an electron-positron plasma. The nonlinear con-
vective velocity and the electron and positron pressure
tensors support the quasisteady reconnection electric field
in such a plasma. Despite the absence of the Hall current
and whistler waves, the reconnection geometry adjusts to
form X points that can sustain a fast reconnection rate. This
result appears to be a consequence of the localization of an
effective collisionless resistivity produced by the pressure
tensors of electrons and positrons.
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Note added.—After this work was submitted for pub-
lication, A. Ishizawa and R. Horiuchi informed us that
24500
their PIC simulations of quasisteady collisionless recon-
nection in an open system with mass ratio me=mi � 1=800
exhibits suppression of the Hall current term due to gyro-
viscous cancellation at scales between the ion skin depth
and the ion meandering orbit scale [21]. Thus fast colli-
sionless reconnection appears to occur in their system
despite this suppression. The results presented here are
complementary to theirs because the Hall current term
cancels out exactly everywhere in a pair plasma, yet we
have fast reconnection.
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