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Spreading of Viscous Fluid Drops on a Solid Substrate Assisted by Thermal Fluctuations
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We study the spreading of viscous drops on a solid substrate, taking into account the effects of thermal
fluctuations in the fluid momentum. A nonlinear stochastic lubrication equation is derived and studied
using numerical simulations and scaling analysis. We show that asymptotically spreading drops admit
self-similar shapes, whose average radii can increase at rates much faster than these predicted by Tanner’s
law. We discuss the physical realizability of our results for thin molecular and complex fluid films, and
predict that such phenomenon can in principal be observed in various flow geometries.
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FIG. 1 (color online). Schematic representation of a one-
dimensional spreading drop, confined in a channel of width W.
The precursor layer of height b is also shown.
Water drops spreading on a table and oil drops lubricat-
ing a pan are two common examples of a phenomenon
encountered frequently in the kitchen as well as in natural
and industrial environments: Spreading of liquids on solid
surfaces. Despite its prevalence and the basic hydrody-
namic principles involved, it was not until the late 1970s
that the asymptotic rate of spreading processes was found
by Tanner [1] for surface-tension dominated flows. The
spatial scale ‘ of a viscous drop spreading on a smooth
plane increases asymptotically in time as ‘� tz, where
z � 1=10, 1=7 for radially symmetric two-dimensional
and one-dimensional flow geometries, respectively. This
asymptotic response has been found in many molecular
and polymeric drops, whose decreasing thickness has been
detected down to 10 nm [2]. As the field of nanofluidics is
evolving towards formation of thinner liquid films, theo-
retical tools are needed to describe flow patterns in such
geometries. However, the applicability of classical hydro-
dynamic theory for these systems is questionable. While
the necessity to incorporate van der Waals (vdW) fluid-
solid attraction was recognized long ago [3], other funda-
mental aspects have never been fully addressed. In particu-
lar: Does a three-dimensional hydrodynamic description
hold for a film whose thickness is just a few molecular
layers? What are the effects of thermal fluctuations on the
deterministic hydrodynamics at such small scales?

To resolve these questions, extensive molecular dynam-
ics (MD) or lattice-gas (LG) simulations of flow in liquid
films are required to allow comparison and quantify devia-
tions from a regular hydrodynamic theory [4]. While a full
resolution of these questions is still not available within
current computational possibilities, recent studies are in-
dicative. For example, Abraham et al. [5] used the LG
algorithm to study flow in a precursor film associated with
a spreading drop and demonstrated significant deviations
from the predictions of a hydrodynamic model [3]. Also,
MD simulations of nanojets, whose initial radius was about
10 molecular diameters, were shown to be qualitatively
consistent with simulations of a stochastic Navier-Stokes
(NS) equation, where the viscous stress tensor was supple-
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mented by a stochastic tensor whose temperature-
dependent magnitude is determined from the fluctuation-
dissipation theorem [6]. The emerging picture is that, at
least in some cases, a hydrodynamic description can be
used as a quantitative tool for the flow of nanofluids;
however, modifications of the classical equations are
required.

In this Letter we take one further step forward by
exploring the influence of thermal fluctuations on the shape
and rate of the spreading of nondimensional drops, while
assuming a generalized NS equation holds, similar to [6].
We should note, however, that, in addition to thermal
fluctuations, other modifications of the hydrodynamic
equations that stem from density variations near the inter-
faces [7] might be necessary in this regime.

Consider the dynamics of the height h�x; y; t� of an
incompressible planar viscous fluid film on top of a smooth
solid surface, located at h � 0 (Fig. 1). We consider vis-
cous fluids, such that inertia can be neglected. The mass
conserving dynamics of long wavelength fluctuations of
the surface, jrhj � 1, is described by the lubrication
equation
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~r � �h3 ~rp�; (1)

where � is the viscosity and p is the pressure. The deriva-
tion of Eq. (1) from the NS equation is a standard exercise
in fluid mechanics [8]. Spatial variations of the pressure
associated with fluctuations of the liquid-vapor interface
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result from several sources: gravity, surface tension, and
vdW attraction with the solid surface:

p � �gh� �r2h� A=h3; (2)

where � is the fluid density, g is the gravitational accel-
eration, � is the liquid-vapor surface tension, and A is the
Hamaker constant. Tanner’s law corresponds to similarity
solutions of Eq. (1)

h� ~x; t� � jxj��f�jxj=tz� (3)

in the surface-tension-dominated regime j�r2hj 	 j�ghj,
jA=h3j where the exponent � � 1; 2 is determined by
requiring volume conservation V �

R
dd ~xh� ~x; t�, yielding

� � d for one-dimensional (d � 1) and two-dimensional
(d � 2) flow geometries.

The central equation of this Letter is a stochastic gen-
eralization of Eq. (1):
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~r � 
h3=2�� ~x; t��; (4)

which captures effects of thermal fluctuations on the sur-
face dynamics. Here, �� ~x; t� is a spatiotemporal Gaussian
white noise. Equation (4) can be derived from the full 3D
NS equation, similar to Eq. (1), by adding a stochastic
stress, representing thermal fluctuations of the fluid mo-
mentum, to the viscous stress tensor [9]. We can avoid,
however, such a tedious derivation by considering a linear
version of Eq. (1), and use the fluctuation-dissipation
theorem to find the correct magnitude of a Langevin term
that gives rise to equipartition of the thermal energy carried
by its eigenmodes h~q� ~x; t� � H � �h~q�t� cos� ~q � ~x�. Here
j�h~q=Hj � 1,H is the average thickness of the film, and ~q
is a planar wave vector. The linear eigenmodes of the
stochastic surface dynamics are required to satisfy
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2�jqjkBT

q
�~q�t�; (5)

where p~q � ��g� �jqj
2 � 3A=H4��h~q cos� ~q � ~x� is the

pressure associated with a surface eigenmode, �jqj �
3�=jqj2H3 is its friction coefficient, and �~q�t� is the spatial
Fourier transform of �� ~x; t�. Notice that the long wave-
length approximation underlying Eq. (1) implies jqjH�
1. Dividing both sides of Eq. (5) by �jqj and taking the
inverse Fourier transform we obtain

@�h
@t
�

1

3�
~r � �H3 ~rp� �

�����������������
2kBTH3

3�

s
~r � �� ~x; t�: (6)

The linear Eq. (6) describes near-equilibrium thermal fluc-
tuations of a surface, j�hj � H. The spreading dynamics
of a drop that does not satisfy this condition must be
described by a nonlinear equation. To this end, notice
that Eq. (1) can be recovered from the deterministic part
of Eq. (6) by making the transformation H, �h ! h and
requiring the resulting equation to conserve fluid mass. By
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following exactly the same steps, the nonlinear Langevin
Eq. (4) can be derived from Eq. (6).

A word of caution is in order. For any extrapolation of
the fluctuation-dissipation theorem to nonlinear, far from
equilibrium dynamics, a local equilibrium assumption
must be made [10]. Namely, the description of the surface
dynamics with Eq. (4) assumes that the magnitude of
thermal fluctuations of the liquid-vapor interface at ~x is
determined by the local value of the surface height h� ~x; t�.
This assumption is justified only for thermal fluctuations
whose wavelength �� ��� ~x; t� � h=jrhj. The relaxation
dynamics of fluctuations whose wavelength � > ��� ~x; t� is
strongly coupled to interface fluctuations, and thus their
magnitude cannot be assumed to be given by the near-
equilibrium result (4). Including these modes in the sto-
chastic analysis involves advanced methods [10], and is not
pursued here. Since we expect ��� ~x; t� ! 1 as t!1, our
local equilibrium assumption becomes asymptotically cor-
rect. In addition, the number of linear eigenmodes with
� > �� scales as ���=L�d�1, where L is the lateral size of
the drop. Therefore, we expect Eq. (4) to provide a better
description of the intermediate time dynamics in two-
dimensional than in one-dimensional geometries.

In studying Eq. (4), our basic motivation was to under-
stand the possible effects thermal fluctuations may have on
the asymptotic rates of spreading, e.g., by modifying
Tanner’s law. With this view, we focused our analysis on
two characteristic flow geometries: (i) one-dimensional
drops confined in a channel of width W (Fig. 1), and
(ii) two-dimensional radially symmetric drops. In the first
case, Eq. (4) assumes the form
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In the second case, Eq. (4) becomes
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We simulated the volume-conserving spreading of a drop
according to (7) by using finite-difference-based computa-
tional techniques as in [11], which guarantee non-
negativity of the field h�x; t� for the deterministic part of
(7). In our simulations, the noise term is included in the
right-hand side (RHS) of a spatial-temporal discrete ver-
sion of Eq. (7), which is advanced in time through an
implicit method. Non-negativity of h�x; t� is implemented
by a short-range repulsive potential between the liquid and
the solid substrate, which should be included in the pres-
sure in Eq. (4). We avoid the explicit use of such a potential
by allowing numerical noise realizations only if they pre-
serve the non-negativity of h�x; t�. Such a procedure in-
duces correlations in the otherwise white noise field, which
are unavoidable if the repulsive potential is not introduced
5-2
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explicitly. In our simulations we use a nondimensional
version of Eq. (7):
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~h3=2��~x;~t��; (9)

where ~h � h=h0, ~x � x=h0, ~t � t=t0 where h0 is the maxi-
mal height of the initial drop, t0 � 3�h0=�, and 	 �
kBT=�Wh0. Our initial condition is a one-dimensional
droplet with circular cross section, and a substrate wet by
a precursor film of height b to ensure complete wetting (see
Fig. 1). Physically, b is a scale below which short range
forces (e.g., vdW interaction with a solid substrate for
molecular fluids, or colloid diameter for colloidal suspen-
sions) govern the surface dynamics.

Typical drop shapes obtained by averaging ~h�~x;~t� over
many realizations of Eq. (9) with several values of 	 are
presented in Fig. 2, and compared to the dynamics of a
spreading drop governed by the deterministic Eq. (1).
Figure 2 clearly indicates the effect of thermal fluctuations
in enhancing the rate of spreading drops.

To gain some quantitative understanding of this effect,
we measured the average rate by which characteristic
lateral scales ~‘ of the drop evolve for various magnitudes
of the stochastic force, and compared them to Tanner’s law
in this geometry: ~‘det � ~t1=7. To estimate ~‘ we have used
the averaged second moment of the height profile,

~‘ �
��

1

V

Z
d~x�~x� ~X�2 ~h�~x;~t�

�
1=2
�
; (10)

where ~X � 

R
d~x ~x ~h�~x;~t��=V is the instantaneous droplet

center position, V �
R
d~x ~h�~x;~t� is the constant volume of

the droplet, and h� � �i represents an average over realiza-
tions of the noise ��~x;~t�. The results of this analysis are
shown in Fig. 3(a), from which we extract a modified
asymptotic spreading rate in volume-preserving one-
dimensional flow geometry: ~‘stoch � ~t1=4. Obviously, the
larger 	 is the earlier is the deviation from Tanner’s to the
fluctuations-dominated asymptotic rate of spreading.

The appearance of a new power law for spreading sug-
gests that the dynamics of the spreading drop is self-
similar. The self-similarity is demonstrated through the
FIG. 2 (color online). Average shape of the droplet h~h�~x;~t�i
over 50 realizations as a function of time for zero temperature
(left) and 	 � 10�2 (right). The right picture clearly shows the
enhanced spreading of the droplet in the presence of thermal
fluctuations. The numerical parameters used in this simulation
are �~t � 0:01, �~x � 0:05, and ~b � 0:01.
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excellent data collapse shown in Figs. 3(b) and 3(c).
Indeed, the power law ~‘stoch � ~t1=4 follows by assuming a
self-similar solution (in the statistical sense) of the form (3)
to Eq. (9) [12]. Conservation of drop volume in one-
dimensional geometry implies � � 1 in the self-similar
form (3). Substituting this in Eq. (9) gives rise to two
possible scalings. The first, obtained by assuming that the
surface-tension term is dominant on the RHS of (9), is
Tanner’s law ~‘det � ~t1=7. By contrast, if the stochastic force
is dominant, we consider a self-similar dynamics of the
average h~hi � f�j~xj=~tz�=j~xj. On the RHS of Eq. (9) we
substitute the average stochastic force h�i � 1=

��������
~tj~xj

p
over

a time interval ~t and space interval j~xj. Thus we obtain
~‘stoch � ~t1=4, in agreement with the simulations. Assuming
the scaling relations ~h� j~xj�1 and ~t� j~xj4 we evaluate the
surface-tension term in Eq. (9) as j~xj�8 and the average of
the stochastic force as

�������
2	
p

j~xj�5. Requiring dominance of
the stochastic term and returning to dimensional variables,
we obtain that the stochastic scaling behavior is expected
for

jxj 	 x�; h� h2
0=x

�; (11)

where x� � h7=6
0 W1=6=‘1=3

T and ‘T �
��������������
kBT=�

p
. Thus, a

necessary condition for observation of stochastic scaling
behavior is h0 	 W 	 ‘T . Typical values of ‘T are a few
angstroms for molecular fluids (far from the critical point),
or the colloid size a for colloidal suspensions [13].
Applying a similar analysis for the radially symmetric
spreading, Eq. (8), shows that self-similarity dominated
by the stochastic force gives an enhanced rate of spreading
~‘stoch � ~t1=6, compared to Tanner’s law ~‘det � ~t1=10. The
average stochastic force is dominant over surface tension if

r	 h4=3
0 =‘1=3

T ; h� h2=3
0 ‘1=3

T ; (12)

and thus requires h0 	 ‘T .
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FIG. 3. Results of volume-conserving dynamics in one-
dimensional geometry. (a) Lateral scale of the droplet (10) as
a function of time. Solid lines represent averages over 50
realizations of (9) with 	 � 10�2, 5
 10�3, 10�3 (from top
to bottom), while the dashed line is the noiseless (	 � 0)
dynamics. Dotted lines correspond to the power laws ~t1=4 and
~t1=7. (b) Averaged profile of the droplet for times ~t � 103n=4, n �
0; 1; 2; 3; 4. (c) Rescaled droplet profiles.
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For molecular fluids, the enhanced rates associated with
stochastic scaling behavior can be observed if the stochas-
tic force in Eq. (9) is dominant not only with respect to the
surface-tension term as is expressed in (11) and (12), but
also with respect to the vdW force that can be strong for
thin films [14]. In the nondimensional units of Eq. (9) this
force is A

�h2
0

@
@~x �

~h�1 @~h
@~x�. For the one-dimensional geometry

we use the scaling relations ~h� j~xj�1 and ~t� j~xj4 to
compare between the average stochastic and vdW forces
and obtain the additional condition for the stochastic scal-
ing regime

x� h3=2
0 ‘1=3

T =‘2=3
vdWW

1=6; (13)

where ‘vdW �
���������
A=�

p
. An overlap between the intervals in

Eqs. (11) and (13) is achieved if h0 	 W�‘vdW=‘T�2.
Typical values of A are 100kBT [14] and thus ‘vdW > ‘T ,
and this overlap can be obtained for h0 	 W 	 ‘T .
Similar analysis for two-dimensional geometry yields the
result r� �h11

0 ‘
2
T=‘

4
vdW�

1=9. Consistency of this condition
with Eq. (12) is possible only if h0 � ‘5

T=‘
4
vdW, which

seems unfeasible for typical fluids. We conclude that
volume-preserving fluctuation dominated spreading can
be observed for molecular fluids in one-dimensional flows
if the initial height of the drop is large enough.

By contrast, the weak vdW attraction of complex fluids
with a solid substrate is not expected to affect spreading,
and thus we require the lateral scale (x for one- and r
for two-dimensional geometries) � h2

0=a and h	 a. An
overlap with Eqs. (11) and (12) is achieved if h0 	

�a6W=‘2
T�

1=5, a3=2=‘1=2
T for one- and two-dimensional

geometries, respectively. Both conditions are easily real-
ized if the initial drop is large enough.

Another spreading dynamics in which a stochastic scal-
ing behavior might be observed is a ‘‘leaking’’ process, in
which the height of the film at x � 0 is fixed to a constant
value h0 by a continuous supply of fluid. A self-similar
dynamics in this case has the form (3) with � � 0.
Following similar analysis, we obtain for one-dimensional
geometry the scaling behaviors: ~‘det � ~t1=4, ~‘stoch � ~t1=3,
while for two-dimensional geometry both ~‘det and ~‘stoch �
~t1=4. For the one-dimensional geometry we obtain an in-
creased asymptotic rate of spreading due to thermal fluc-
tuations. To check the realizability of the stochastic scaling
regime, we compare the average stochastic force with
surface-tension and vdW terms, using the scaling rela-
tions ~h� const and ~t� ~x3. For molecular fluids where
vdW forces are important, the stochastic scaling behavior
is expected in the regime h3=2

0 W1=2=‘T � x� h5=2
0 ‘T=

W1=2‘2
vdW, which is again possible provided h0 �

W�‘vdW=‘T�2. Stochastic scaling behavior of a complex
fluid drop under this condition is achieved if h0 	 a and
x	 h3=2

0 W1=2=‘T .
To conclude, we derived a Langevin lubrication Eq. (4),

and showed that it gives rise to asymptotic behavior which
24450
is significantly different from Tanner’s law of spreading.
By comparing the average stochastic force with classical
forces such as surface tension and van der Waals, we
showed that fluctuation-assisted spreading is expected
asymptotically in various flow geometries of molecular
and complex fluids. Complex fluids are attractive candi-
dates for studying the enhanced spreading rate phenome-
non predicted in this Letter, since confocal microscopy
techniques enable direct observation of interfacial thermal
fluctuations in systems such as colloidal suspensions [13].
We believe that this result will motivate further studies of
the role of thermal fluctuations in small dimensional
systems.
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Note added.—The same stochastic lubrication Eq. (4)
was derived independently in a recent study of dewetting
phenomena [15].
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