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Singularities of the Hele-Shaw Flow and Shock Waves in Dispersive Media
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We show that singularities developed in the Hele-Shaw problem have a structure identical to shock
waves in dissipativeless dispersive media. We propose an experimental setup where the cell is permeable
to a nonviscous fluid and study continuation of the flow through singularities. We show that a singular flow
in this nontraditional cell is described by the Whitham equations identical to Gurevich-Pitaevski solution
for a regularization of shock waves in Korteveg–de Vriez equation. This solution describes regularization
of singularities through creation of disconnected bubbles.
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FIG. 1 (color online). Schematic Hele-Shaw experimental
setup. Shaded region represents a small bubble of air in the
ambient oil. The insulator is permeable to air but not to oil.
Introduction.—A broad class of nonequilibrium growth
processes in two dimensions are characterized by a com-
mon law: the velocity of the growing interface is deter-
mined by the gradient of a harmonic field (often referred to
as Laplacian growth) [1].

Growth processes determined by a harmonic field,
where no cutoff scale is introduced, are important. The
theory of this kind of growth is deeply related to funda-
mental aspects of conformal maps, integrable systems, 2D
quantum gravity, and random matrices [2]. However, sin-
gularities makes this problem ill defined and thus not
achieved experimentally.

The goal of this Letter is twofold. One is to suggest an
experimentally achievable setup, where a high-rate flow
can continue through singularities, without being curbed
by dissipative forces. Another is to stress a deep and
important parallel between the singularities of growing
interface and ‘‘gradient catastrophes’’ known in the theory
of shock waves in dispersive media. The Korteveg–
de Vriez (KdV) and other nonlinear waves equations fea-
ture this phenomenon. This relation allows one to effec-
tively study complicated singular processes.

The relation between the Hele-Shaw problem and dis-
persive nonlinear waves suggests a unique regularization,
namely, one which plays a similar role as dispersion of
nonlinear waves. There, dispersion (no matter how small it
is), becomes crucial near a singularity, converting shock
waves to oscillatory structures [3].

The Hele-Shaw flow.—The Hele-Shaw cell is a narrow
space between two plates filled by incompressible viscous
liquid (say oil). Air (regarded as inviscid and incompress-
ible) occupies a part of the cell forming one or several
bubbles. Traditionally air is pumped into one bubble, while
oil is extracted from the cell at a constant rate Q> 0
through the edges placed at infinity. Without surface ten-
sion, the interface may develop singular cusps at a finite
time [1]. At this moment the problem becomes ill posed.

We suggest a novel setup where the upper plate is
permeable to air and is connected to a reservoir of air.
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Neither plates are permeable to oil. This setup may be
achieved by sticking a Gortex-like material to glass plates
having small perforations (Fig. 1). We thus assume that all
air bubbles are kept at the same atmospheric pressure. We
also consider a retraction problem, where oil is extracted
from the cell, i.e., Q< 0.

In both cells the flow obeys the same local equations
(D’Arcy’s law): the local velocity of oil, averaged over the
gap between the plates, is proportional to a gradient of
pressure p. In an incompressible fluid, pressure is a har-
monic function. Thus the normal velocity of the interface,
vn, is proportional to the normal derivative of pressure, and
in proper units vn � �@np. If in addition surface tension is
ignored, the pressure is continuous across the interface,
and may be set to p � 0 within each bubble. Thus the
pressure solves the exterior Dirichlet boundary value prob-
lem: �p � 0, with p � 0 on the boundary, and p!
�Q logjzj at infinity.

Bubble breakoff and merging.—Let us now describe an
air retraction process in our experimental setup. A typical
local evolution of an air bubble consists of few phases
illustrated in Fig. 2: (i) as oil is injected, the air bubble
contracts; (ii) the air bubble forms a singular narrow neck
and breaks up into one or several disconnected bubbles;
(iii) all bubbles subsequentially contract, while losing air
through the upper plate.

As we show in this Letter, the method of regularization
of shock waves provides a detailed description of retraction
evolution in the limit of zero surface tension. This is in
contrast with the injection process in a traditional Hele-
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FIG. 2. Graph of numerical solution for branch points ui�t1�
compared to the hodograph for u�t1�. Finger shapes at early (�),
singular (�), and late (�) stages of evolution.
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Shaw cell where solutions at the zero surface tension limit
are valid only until a cusp is formed. This difference
suggests that surface tension is a nonsingular perturbation
in our new experimental setup.

Dispersive regularization of shock waves.—The term
shock wave is usually used to describe nonlinear waves
in presence of dissipation. In the absence of dissipation the
shock-wave behavior is different. It is resolved by convert-
ing to oscillations. The method to study this complicated
behavior was suggested by Gurevich and Pitaevskii (GP)
[4], and refined in later works [3,5,6]. They [4] studied
solutions to the KdV equation

@t3u �
3
2u@t1u� "@

3
t1u; (1)
with steplike boundary conditions: u�t1 ! �1� � u0 and
u�t1 ! �1� � 0. Initially the function u�t3; t1� is smooth
(t3 � 1 of Fig. 3), so the dispersion term @3

t1u may be
neglected. However, the Hopf-Burgers equation @t3u �
3
2 u@t1u, thus obtained, always develops a shock wave, a
singularity with an infinite slope (t3 � 0 of Fig. 3) fol-
lowed by an unphysical overhang (t3 � �1 of Fig. 3). This
signals that the limit "! 0 is singular.

In fact, the solution with finite " never develops a shock
wave. Before the singularity occurs the wave breaks into
fast oscillations (see Fig. 3), of a period scaling with ".

When "� 1, the oscillatory regime can be described by
slowly modulated periodic solutions of the KdV equation.
These are given by the elliptic function
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FIG. 3 (color online). Solutions of the hodograph for t3 � �1
(green), 0 (red), and 1 (black). Unphysical multivalued region (in
dashed line) of the t3 � �1 graph is replaced by an oscillatory
solution in heavy gray line (numerical).
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in which moduli �, m, V, � (i.e., frequency, amplitude,
etc.) depend on the times t3; t1. This dependence is de-
scribed by the Whitham equations [7]. These equations
appear below in (11) and (12), to describe the Hele-Shaw
flow.

A similar situation takes place in our problem. We will
show that a typical flow is identical to averaging the
solution (2) over fast oscillations, and is, essentially, de-
scribed by the same Whitham equations.

Correspondence between interface dynamics and shock-
wave solutions.—In order to establish a link between
modulated periodic solutions of the KdV equation and
growth of planar domains let us recall the notion of the
spectral curve [8]. The spectral curve (or Riemann surface)
encodes periodic solutions of nonlinear integrable equa-
tions. In the KdV case it is a hyperelliptic curve

y2 � Rm�z�; m � 2‘� 1; (3)

where y and z are complex variables, and Rm is a poly-
nomial of an odd degree, such that its roots are real. The
spectral curve of solution (2) is given by a polynomial of
degree m � 5 and Eq. (10). A nonperiodic solution at
small " is described by slowly varying spectral curves.

A shock wave indicates a singular evolution when the
curve changes its genus. We will show that for the interface
dynamics an increase of the genus implies a bubble break-
off, since the interface is a real section of the curve when
the coordinates z and y are real [9–11].

The critical flow.—Once injecting air into Hele-Shaw
cell, the bubble develops a ‘‘finger.’’ Its tip is pushed away
with increasing velocity that eventually may result in a
cusplike singularity (Fig. 2).

Let us choose the origin at the point where a cusp would
form, and simplify the argument assuming that the finger is
symmetric with respect to its x axis. In dimensionless units,
where the size of the entire droplet is of order 1 we have
jyj � jxj � 1. Let us denote the distance between the tip
and the origin by u�t� � 1. It sets the only (time depen-
dent) scale of the critical flow.

A critical flow of an isolated finger is conveniently
formulated as the time evolution of the Cauchy transform
of air bubbles:

h����z� �
1

2�i

I
�

y0dz0

z� z0
; z � x� iy: (4)

This integral defines analytic functions h��z� for z inside
and outside air, respectively. A direct calculation shows
that D’Arcy law is equivalent to

@th
����z� � 0; @th

����z� � �2i@zp�z; �z�: (5)

The first equality implies an infinite series of conserved
quantities first observed in [12].
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A generic form of the critical finger (insets � and � in
Fig. 2) is given by a curve (3), y2 � Rm�x�, such that all the
coefficients of the polynomial Rm�x� are real and it has at
least one real root x � u at the tip of the finger. In the
critical regime the coefficients of the polynomial
umRm�x=u� are of order 1, while u! 0 as time approaches
the critical time tc. There a finger becomes the �2; 2‘� 1�
cusp y2 	 jxj2‘�1.

The critical flow is conveniently described in terms of
the height function [10]. The height function y�z� �������������
Rm�z�

p
is defined on a hyperelliptic Riemann surface,

and is an analytic function outside the finger, having
boundary value y�x� on the boundary of the finger. In
[10] it was proved that: (i) the finger remains self-similar,
i.e., remains of the form of polynomial of a fixed degree,
only if all its simple roots are real. In this case branch
points other than u correspond to additional finite size
droplets, if any. As a consequence, a sole finger is de-
scribed by a degenerate curve

������������
Rm�z�

p
�

������������
z� u
p

P‘�z�,
where P‘ is a polynomial of degree ‘. (ii) The coefficients
t3; . . . ; t2‘�3 (called deformation parameters) in front of all
positive fractional powers of z in the expansion of

y�z� �
������������
Rm�z�

q
�
X‘�1

k�0

�
k�

1

2

�
t2k�1zk��1=2� �O�z�3=2�

(6)

do not depend on time. Furthermore, the coefficient in front
of the first negative power, z�1=2, is proportional to time
t1 	Q�t� tc�. The negative tail of the series (6) depends
on time in a nontrivial way.

For simplicity let us consider a single finger and study
the behavior of h��z� in the domain juj � jzj � 1, far
from the tip but around the finger, where details of the tip
are not seen. The Cauchy integral (4) for z > u on the
positive real axis contains only regular terms (i.e., positive
integer powers of z). Therefore, h��� extends analytically
as a regular function to the whole domain of interest. The
singular part of the function h��� (containing also fractional
powers of z) then provides all necessary information. It has
a cut inside the finger drawn along the x axis (see Fig. 2).

In order to compute the Cauchy integral (4), we expand
the function y�x� in a series in half-integer powers of x and
evaluate h����z� term by term. The function h����z� has a
cut along the finger axis from u to infinity and takes
opposite real values on the two sides of the cut.
Conventionally, we choose a single-valued branch such
that y�x� i0�> 0. For real negative z � x we find
h����x� � y�x�. Therefore, the singular part of h����z� is
to be identified with the height function

h����z� � y�z� �
������������
Rm�z�

q
: (7)

Now consider the evolution of the finger [or the curve (3)]
encoded by Eq. (5). The leading behavior of pressure
around the finger follows from solution to the Dirichlet
boundary value problem around a slit (since jyj � jxj, the
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finger roughly looks like a cut): p�z; �z� / Re
�������
�z
p

. This
proves that higher terms in the expansion of the height
function (6) are conserved.

Dispersionless KdV hierarchy.—We have reformulated
the Hele-Shaw flow as an evolution of a hyperelliptic
curve. Notably, the spectral curve of the KdV equation
(1) evolves exactly in the same way. In particular, it follows
from (5)–(7) that before the breakoff the scale u evolves
with time and other deformation parameters according to
the dispersionless KdV hierarchy [10]

2nn!@t2n�1
u� �2n� 1�!!un@t1u � 0:

�2; 5� critical finger.—A generic flow is represented by a
family of critical fingers of the form (3) with 2‘� 1 � 5

y2 � �x� u��x� d��
2�x� d��

2: (8)

The x4 term, and therefore t5 in (6), can always be elim-
inated by a shift (2d� � 2d� � u � 0), leaving t3 as the
only deformation parameter. Substituting this to (6) we
obtain the hodograph solution [16,17]

5
8u

3 � 3
2ut3 � t1 � 0; (9)

implicitly giving the branch point u in terms of t1, t3. A
singularity occurs when u merges with one or two double

points d� �
1
4 ��u�

���������������������������
�24t3 � 5u2

p
�.

The features of finger’s evolution crucially depend on
the sign of t3 (Fig. 3). If t3 > 0, then the double points
never reach the real axis. The function u�t1� is single
valued and in both extraction and injection processes the
finger never becomes singular (inset � in Fig. 2).

In the case t3 � 0 the solution is u�t� / �
Q�t� tc��1=3.
This corresponds to a finger which evolves into the �2; 5�
cusp y2 � x5. At t � tc, all the three roots coincide—u �
d� � d� � 0. An interesting feature of the �2; 5� cusp
[and of all cusps �2; 2‘� 1� at even ‘] first noted in [18]
is that the evolution can be extended beyond the cusp by
means of the same hodograph equation (9).

The most interesting case is t3 < 0. A formal solution in
the injection case leads to the �2; 3� cusp, y2 / x3, which
cannot be continued. The plot in Fig. 3 becomes multi-
valued in the region t21 <

4
5 ��t3�

3.
Air extraction-bubble breakoff.—We treat air extraction,

where Q< 0, and the physical time is �t1. At an early
stage, the finger tip is far to the left (u is large negative and
t1 is large positive). Extracting air from the bubble results
in a tip motion from left to right and a changing shape of
the finger in accordance with the hodograph solution. The
evolution follows the branch of the plot from t1 � �1
until the point A in Fig. 2. At this stage, the double points
d� of the curve (8) are complex. At t1 � tA ������������

54=5
p

��t3�
3=2 they approach the real axis and merge. As

t1 ! tA, the finger develops a thin neck around the point
�u=4, which breaks at t1 � tA through the �2; 4� cusp y2 /
x4. At the breakoff the curve is y2 � �x� u��x� 1

4u�
4 (u is

negative). The bubble which breaks off from the main one
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has area 25
��
5
p

84 ��u�
7=2. After this singular point, the evolu-

tion according to the hodograph solution (9) is unphysical.
It leads to an interface with a self-intersection point.

The actual evolution at t1 < tA does not follow the cubic
parabola (9) in Fig. 3. The correct extension of the solution
beyond the singularity describes a small bubble breaking
off from the finger tip. A physical solution describes the
interface (or a spectral curve) y2 � R5�x� with R5�x� hav-
ing only one rather than two double roots:

y2 � �x� u1��x� u2��x� u3��x� d0�
2; (10)

where d0 � V � 1
2 �u1 � u2 � u3�. Now the height func-

tion y�z� has two cuts: one small cut inside the small bubble
and an infinite cut inside the finger (inset � in Fig. 2). The
double point d0 moves between them. Mathematically, this
means that the complex curve is of genus 1 (an elliptic
curve). Similarly to the genus-0 case (8), a substitution (10)
into (6) we obtain

12t1 � U3
1 � 4U3; �12t3 � U2

1 � 2U2; (11)

where Uk � uk1 � u
k
2 � u

k
3.

In case of two bubbles, t1, t3 are not enough to fix the
dynamics. An additional conserved quantity follows from
the condition on pressure. Since air is under the same
pressure in both bubbles, we write

R
u3
u2
dp �

2Re
R
u3
u2
@zpdz � 0, or, using (5), Im

R
u3
u2
@th���dz � 0.

Since h����ui� � y�ui� � 0, we rewrite this condition as
@t�Im

R
u3
u2

������������
R5�x�

p
dx� � 0. The quantity under the integral

is purely imaginary and vanishes at t1 � tA, hence
Z u3

u2

������������
R5�x�

q
dx � 0: (12)

This condition closes the system of Eq. (11) after the
breakoff. However, unlike the algebraic equations for tk,
this condition is transcendental. A solution is available
through elliptic functions. It gives the time dependence
of functions u1; u2; u3 plotted in Fig. 2. After the breakoff,
the small bubble starts to evaporate and eventually disap-
pears at t1 � tC � �

�����������
2=27

p
��t3�

3=2 corresponding to the
point C on the plot. After that, the solution switches back to
the cubic parabola. The finger proceeds further without
obstacles.

Discussion.—Below we highlight our major results. We
propose a novel, experimentally accessible modification of
the Hele-Shaw cell, where the flow proceeds through sin-
gularities without being curbed by a surface tension. In this
cell singularities of the flow are resolved by creation of
new bubbles, all kept at the same constant pressure. This
behavior can be seen experimentally.

The flow in such an air-permeable cell can be studied
with the help of mathematical tools of soliton theory. We
identified bubble breakoff with the shock-wave behavior of
the KdV equation.
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