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Bethe Ansatz Solution of the Asymmetric Exclusion Process with Open Boundaries
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We derive the Bethe ansatz equations describing the complete spectrum of the transition matrix of the
partially asymmetric exclusion process with the most general open boundary conditions. For totally
asymmetric diffusion we calculate the spectral gap, which characterizes the approach to stationarity at
large times. We observe boundary induced crossovers in and between massive, diffusive, and Kardar-
Parisi-Zhang scaling regimes.
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The partially asymmetric simple exclusion process
(PASEP) describes the asymmetric diffusion of particles
along a one-dimensional chain with L sites. It is one of the
most studied models of nonequilibrium statistical mechan-
ics; see [1,2] for recent reviews. This is in part due to the
fact that it is one of the simplest lattice gas models, but also
because of its applicability to molecular diffusion in zeo-
lites [3], bioploymers [4], traffic flow [5], and other one-
dimensional complex systems [6].

At large times the PASEP exhibits a relaxation towards a
nonequilibrium stationary state. An interesting feature of
the PASEP is the presence of boundary induced phase
transitions [7]. In particular, in an open system with two
boundaries at which particles are injected and extracted
with given rates, the bulk behavior in the stationary state is
strongly dependent on the injection and extraction rates.
Over the last decade many stationary state properties of the
PASEP with open boundaries have been determined ex-
actly [1,2,8–11]. On the other hand, much less is known
about its dynamics. This is in contrast to the PASEP on a
ring for which exact results using Bethe’s ansatz have been
available for a long time [12,13]. For open boundaries there
have been several studies of dynamical properties based
mainly on numerical and phenomenological methods
[14,15]. In this Letter we employ Bethe’s ansatz to obtain
exact results for the approach to stationarity at large times
in the PASEP with open boundaries. Upon varying the
boundary rates, we find crossovers in massive regions,
with dynamic exponents z � 0, and between massive and
scaling regions with diffusive (z � 2) and Kardar-Parisi-
Zhang (KPZ) (z � 3=2) behavior.

The dynamical rules of the PASEP are as follows. At any
given time t each site is either occupied by a particle or
empty, and the system evolves subject to the following
rules. In the bulk of the system (i � 2; . . . ; L� 1) a parti-
cle attempts to hop one site to the right with rate p and one
site to the left with rate q. The hop is executed unless the
neighboring site is occupied, in which case nothing hap-
pens. On the first and last sites these rules are modified. If
site i � 1 is empty, a particle may enter the system with
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rate �. If, on the other hand, site 1 is occupied by a particle,
the latter will leave the system with rate �. Similarly,
at i � L particles are injected and extracted with rates �
and �, respectively. With every site i we associate a
Boolean variable �i, indicating whether a particle is present
(�i � 1) or not (�i � 0). The state of the system at time t
is then characterized by the probability distribution
Pt��1; . . . ; �L�. The time evolution of Pt occurs according
to the aforementioned rules and, as a result, is subject to the
master equation

dPt
dt
� MPt: (1)

Here M is the PASEP transition matrix whose eigenvalues
have nonpositive real parts. The large time behavior of the
PASEP is dominated by the eigenstates of M with the
largest real parts of the corresponding eigenvalues.

Bethe’s ansatz.—It is well known that the transition
matrix M is related to the Hamiltonian H of the open
spin-1=2 XXZ quantum spin chain through a similarity
transformation M � �

������
pq
p

U�HU
�1
� where H is given

by [10]
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The parameters, � and h, and the boundary terms B1;L are
related to the PASEP transition rates by
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FIG. 1. Sketch of the contour of integration C in (14). The
open dots correspond to the roots zj, and 	 is chosen close to
zL�1 and avoiding poles of cot�LYL�z�=2�.
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Here � is a free parameter on which the spectrum does not
depend and ��j � ��

x
j � i�

y
j�=2.

Although it has been known for a long time that H is
integrable [16], the off-diagonal terms in B1 and BL have
presented great difficulties in diagonalizing H using, e.g.,
Bethe’s ansatz. However, recently a breakthrough was
achieved [17] in the case where the parameters satisfy a
constraint, which in our notation reads

�QL�2k � 1����� ��QL�2k�2� � 0: (4)

Here k is an integer such that jkj � L=2. For a given k this
constraint can be satisfied by choosing Q to be an appro-
priate root of unity, or by relating the boundary and bulk
parameters such that the second factor in (4) is zero.
However, for generic values of the PASEP parameters
Eq. (4) can also be satisfied by choosing k � �L=2. For
this choice of k we infer from [18] that for even L there is
an isolated level with energy E0 � 0, the ground state
energy of the PASEP. Furthermore, all excited levels are
given by

E � �� �� �� ��
XL�1

j�1

�Q2 � 1�2zj
�Q� zj��Qzj � 1�

; (5)

where the complex numbers zj satisfy the Bethe ansatz
equations�zjQ� 1

Q� zj

�
2L
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l�j
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2 � zl

zj � zlQ2
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2 � 1

zjzl �Q2 : (6)

Here K�z� � ~K�z; �; �� ~K�z; �; �� and

~K�z; �; �� �
��z2 �Qz�Q2 � 1� �� �� � �Q2

�Q2z2 �Qz�Q2 � 1� �� �� � �
:

(7)

In order to ease notations we have set, without loss of
generality, p � 1 and hence Q �

���
q
p

. We note that in the
case of symmetric diffusion Q � 1 Eq. (6) reduces to the
Bethe ansatz equations derived in [19] by completely
different means. In order to determine the exact value of
the spectral gap, we have analyzed (5) and (6) in the limit
L! 1. To simplify the analysis, we focus on the case of
total asymmetry � � � � 0, Q! 0 in the remainder of
this Letter.

Totally asymmetric exclusion (TASEP).—After rescaling
z! Qz and setting � � � � 0, the Q! 0 limit of
Eqs. (5) and (6) reads

E � �� ��
XL�1

l�1

zl
zl � 1

; (8)

�
�zj � 1�2

zj

�
L
� �zj � a��zj � b�

YL�1

l�j

�zj � z�1
l �; (9)

where a � �1� ��=� and b � �1� ��=�. We define
g�z� � lnz=�z� 1�2 and gb�z�� lnz=�1�z2�� ln�z�a� �
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ln�z�b�, and consider the ‘‘counting function’’ [20],

iYL�z� � g�z� �
1

L
gb�z� �

1

L

XL�1

l�1

K�zl; z�; (10)

where K�w; z� � � lnw� ln�1� wz�. Equation (9) can
now be written as

YL�zj� �
2�
L
Ij �j � 1; . . . ; L� 1�; (11)

where Ij are integers. Each set of integers fIjg specifies a
particular excited state, and we find numerically that the
first excited state is obtained for the choice

Ij � �L=2� j for j � 1; . . . ; L� 1: (12)

The eigenvalue (8) can be written as
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�
: (13)

In order to derive an integral equation for YL�z� in the
limit L! 1 we write
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where C � C1 � C2 is a contour enclosing all the roots zj,
C1 being the ‘‘interior’’ and C2 the ‘‘exterior’’ part; see
Fig. 1. The contours C1 and C2 intersect in appropriately
chosen points 	 and 	�. Using the fact that integration from
	� to 	 over the contour formed by the roots is equal to half
that over C2 � C1, we find using (14)

iYL�z� � g�z� �
1
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dw; (15)

where we have chosen the branch cut ofK�w; z� to lie along
the negative real axis. The eigenvalue (13) is obtained by
systematically expanding (15) in the system size using
standard methods. We note that care has to be taken
1-2
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FIG. 2. Dynamic phase diagram of the TASEP. MI, MIIa, and
MIIb are massive phases, CL denotes the critical coexistence line,
and MC is the critical maximal current phase.
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when there is a stationary point of YL�z� close to the
contour of integration, in which case an analysis similar
to that in [13] has to be carried out.

Let us briefly recall the stationary state phase diagram
derived in [8,9]. There are altogether four phases in the
stationary state at t � 1: (1) the low-density phase for�<
�< 1=2; (2) the high-density phase for �< �< 1=2;
(3) the coexistence line at � � �< 1=2; (4) the maximal
current phase at �;� > 1=2. We now determine the scaling
of the spectral gap in these regimes from the Bethe ansatz
equations.

Low- and high-density phases.—Let us fix the end points
	� and 	 by

YL�	
�� � ���

�
L
; YL�	� � ��

�
L
: (16)

The integral over C1 in (15) can be calculated by splitting
the contour into its upper and lower parts and expanding
the integrand around 	 and 	�, respectively. Expanding in
inverse powers of L, i.e.,

YL�z� �
X
n�0

L�nYn�z�; 	 � zc �
X
n�1

�nL
�n; (17)

and assuming that �a < zc and �b < zc, we find from
Eq. (15) to O�L�1� that
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where 
1 � �Y
0
0�zc��1=�. The values of 
1 and zc follow

from (16) to be 
1 � 2, zc � �1=
������
ab
p

. Substituting these
values into (13), we obtain the gap (20), which is of order
O�1� in the limit L! 1.

If �b >�1=
������
ab
p

, the point �b lies inside the contour
formed by the roots (see Fig. 1), giving rise to a different
solution for Y1�z�. Comparing again with condition (16),
we find in this case that 
1 � 3 and zc � �a

�1=3 �
�1=

��������
abc
p

, resulting in the spectral gap given in (21),
which is independent of � and again of order O�1� in the
limit L! 1. A similar analysis is made when �a >
�1=

������
ab
p

. As the spectral gap is O�1� in the low- and
high-density phases, the correlation length is finite and
these phases are therefore massive.

Coexistence line.—Subleading corrections can be ob-
tained by taking higher order terms into account in (17).
After a lengthy calculation, we find that the gap vanishes
like L�2 on the coexistence line � � �, with a constant of
proportionality given by (22).

Maximal current phase.—When �>�c and �! 1=2,
the value of zc where the contour closes approaches zc �
�1 and a straightforward expansion of the last two terms in
(15) breaks down as Y0L�	

�� 	 Y00��1� � 0. A further
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complication is the singularity in K�w; z� at w � z � zc �
�1. To proceed one expands around zc defined by
Y0L�zc� � 0 [13,21]. This gives rise to an expansion of
YL�z� in powers of L�1=2, and one finds in lowest order
that the energy gap vanishes as L�3=2. The prefactor can
only be determined numerically.

We now summarize our results. We have used Bethe’s
ansatz to diagonalize the PASEP transition matrix M for
arbitrary values of the rates p, q, �, �, �, and � that
characterize the most general PASEP with open bounda-
ries. The resulting Bethe ansatz Eqs. (5) and (6) describe
the complete excitation spectrum of M and are one of our
main results. We have carried out a detailed analysis of the
Bethe ansatz equations for the simplified case of the
TASEP and determined the exact asymptotic behavior of
the spectral gap for large lattice lengths L. This gap deter-
mines the long time (t
 L) dynamical behavior of the
TASEP. We emphasize that care has to be taken regarding
time scales, and that our results below are not valid at
intermediate times t 	 L where the system behaves as
for periodic boundary conditions [2].

We found that there are three regions in parameter space
where the spectral gap is finite and the stationary state is
approached exponentially fast, and one region and a line
where the gap vanishes as L! 1. The resulting dynamical
phase diagram is shown in Fig. 2. In order to parametrize
the phases we define �c � �1� a�1=3��1 and �c � �1�
b�1=3��1. The values of the spectral gap in the various
regions of the phase diagram of the TASEP are as follows.

Massive phase MI.—�< �c, �< �c, � � �,

�E1 � �� ��
2

1�
������
ab
p �O�L�2�: (20)

The spectral gap does not vanish as L! 1 and hence
implies a finite correlation length and exponential ap-
proach to stationarity.

Low density phase MIIa.—�< 1=2, �> �c,

�E1 � �� �c �
2

1�
��������
abc
p �O�L�2�: (21)

Note that in this phase the spectral gap is independent of�.
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The behavior in the high-density phase MIIb: �< 1=2,
�c < � is obtained by the exchange �$ �.

Coexistence line (CL).—� � �< 1=2,

�E1 �
�2��1� ��

1� 2�
L�2 �O�L�3�: (22)

We thus find a dynamic exponent z � 2 corresponding to
diffusive behavior.

Maximal current phase (MC).—�;� > 1=2

�E1 	 3:56L�3=2 �O�L�2�: (23)

In this phase, which coincides with the stationary maxi-
mum current phase, we find a KPZ [22] dynamic exponent
z � 3=2. The gap is smaller than that of the periodic case
where it is found that �E1 � 6:509 . . .L�3=2 [13,23]. We
note that the subdivision of the massive high- and low-
density phases is different from the one suggested on the
basis of stationary state properties in [9].

Discussion.—It is known [24] that by varying the bulk
hopping rates one can induce a crossover between a dif-
fusive Edwards-Wilkinson (EW) scaling regime [25] with
dynamic exponent z � 2 and a KPZ regime [22] with z �
3=2. In this Letter we have shown using exact methods that
a crossover between phases with z � 2 and z � 3=2 occurs
in the case where the bulk transition rates are kept constant,
but the boundary injection or extraction rates are varied. As
shown in [15], the diffusive relaxation (z � 2) is of a
different nature than in the EW regime and is, in fact,
due to the unbiased random walk behavior of a shock
(domain wall between low- and high-density regions).
Our results (20) and (21) for the massive phase MI and
the coexistence line agree with the relaxation time calcu-
lated in the framework of a domain wall theory (DWT)
model in [15]. This is in contrast to the massive phasesMII,
where the exact result (21) differs from the DWT predic-
tion. An interesting open question is whether it is possible
to understand (21) in a generalized DWT framework.

The Bethe ansatz Eqs. (5) and (6) allow for the exact
determination of further spectral gaps. We find that the
eigenvalue of the transition matrix with the next largest real
part is complex, which leads to interesting oscillatory
behavior at large times. The dynamical phase diagram
for the general PASEP is expected to be significantly
richer, and its analysis is under way.

The condition (4) is a reflection of the non-
semisimplicity of an underlying Temperley-Lieb algebra
with two additional boundary generators [26]. Remarkably,
the PASEP satisfies this constraint for arbitrary values of its
parameters. Generically, non-semisimplicity implies cer-
tain symmetries in the spectrum, and the physical conse-
quences of these are currently under investigation.
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