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Phase Diagram of Spin-1 Bosons on One-Dimensional Lattices
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Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different
magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase
diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd
asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a
dimerized state. The results obtained in this work are also relevant for the determination of the ground
state phase diagram of the S � 1 Heisenberg model with biquadratic interaction.
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The experimental realization of optical lattices [1] has
paved the way to study strongly correlated many-particle
systems with cold atomic gases (see, e.g., [2,3]). The main
advantages with respect to condensed matter systems lie
in the possibility of a precise knowledge of the underly-
ing microscopic models and an accurate and relatively
easy control of the various couplings. Probably one of
the most spectacular experiments in this respect is the
observation [4] of a superfluid-Mott insulator transition
previously predicted in Ref. [5] by a mapping onto the
Bose-Hubbard model [6].

More recently, the use of far-off-resonance optical traps
has opened the possibility to study spinor condensates [7].
Spin effects are enhanced by the presence of strong inter-
actions and a small occupation number, thus resulting in a
rich variety of phases with different magnetic ordering. For
spin-1 bosons, it was predicted that the Mott insulating
phases have nematic singlet [8] or dimerized [9] ground
state depending on the mean occupation and on the value of
the spin exchange. Since the paper by Demler and Zhou
[8], several works have addressed the properties of the
phase diagram of spinor condensates trapped in optical
lattices [10–15]. The increasing attention in spinor optical
lattices has also revived the attention on open problems in
the theory of quantum magnetism. The spinor Bose-
Hubbard model, when the filling corresponds to one boson
per site, can be mapped onto the S � 1 Heisenberg model
with biquadratic interactions which exhibits a rich phase
diagram including a long debated nematic to dimer quan-
tum phase transition [16–23].

Up to now, the location of the phase boundary of the
spinor Bose-Hubbard model has been determined by
means of mean-field and strong coupling approaches. A
quantitative calculation of the phase diagram is, however,
still missing. This might be particularly important in one
dimension where nonperturbative effects are more pro-
nounced. This is the aim of this Letter. We determine the
location of the Mott lobes, showing the even or odd asym-
metry in the spinor case discussed in Ref. [8]. We then
discuss the magnetic properties of the first lobe, concluding
that it is always in a dimerized phase.
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The effective Bose-Hubbard Hamiltonian, appropriate
for S � 1 bosons, is given by

Ĥ �
U0

2

X
i

n̂i�n̂i � 1� �
U2

2

X
i

�Ŝ2
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The operator âyi;� creates a boson in the lowest Bloch band
localized on site i and with spin component � along the
quantization axis: n̂i �
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T�;�0 âi;�0 are the total number of particles and the total spin
on site i, respectively (T̂ are the spin-1 operators). Atoms
residing on the same lattice site have identical orbital wave
function and their spin function must be symmetric. This
constraint imposes that Si � ni must be even. The unique-
ness of the completely symmetric state with fixed spin
and number makes it possible to denote the single site
states with jni; Si; S

z
i i. The coupling constants, which

obey the constraint �1<U2=U0 < 1=2, can be expressed
in terms of the appropriate Wannier functions [10]. U0 is
set as the energy scale unit: U0 � 1. We discuss only the
antiferromagnetic case (0<U2 < 1=2).

In the absence of spin dependent coupling, a qualitative
picture of the phase diagram can be drawn, starting from
the case of zero hopping (t � 0). The ground state is
separated from any excited state by a finite energy gap.
For finite hopping strength, the energy cost to add or
remove a particle �E� (excitation gap) is reduced and at
a critical value t�c ��� vanishes. This phase is named the
Mott insulator. For large hopping amplitudes, the ground
state is a globally coherent superfluid phase. When U2 is
different from zero, states with lowest spins, compatible
with the constraint ni � Si � even, are favored. This in-
troduces an even or odd asymmetry of the lobes: The
amplitude of lobes with odd filling is reduced as compared
with the lobes corresponding to even fillings [8]. In the first
lobe, the extra energy required to have two particles on a
site (instead of one) is 1� 2U2 ��, thus lowering the
chemical potential value where the second lobe starts. On
the other hand, having no particles on a site gives no gain
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FIG. 1. Phase diagram for the first two lobes of the 1D Bose-
Hubbard spin-1 model with nearest-neighbor interactions. The
different panels correspond to different values of U2. The curves
for U2 � 0 coincide with the first two lobes for the spinless
model computed in Refs. [25,26].
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due to spin terms, accounting for the nearly unvaried
bottom boundary of the lobe.

In order to determine the phase diagram of Eq. (1), we
use the finite-size density matrix renormalization group
(DMRG) with open boundary conditions [24]. The strategy
of the DMRG is to construct a portion of the system (called
the system block) and then recursively enlarge it, until the
desired system size is reached. At every step, the basis of
the corresponding Hamiltonian is truncated, so that the size
of the Hilbert space is kept manageable as the physical
system grows. The truncation of the Hilbert space is per-
formed by retaining the eigenstates corresponding to the m
highest eigenvalues of the block’s reduced density matrix.

The DMRG has been employed, for the spinless case, in
Refs. [25,26]. The presence of the spin degree of freedom
makes the analysis considerably more difficult. In the
numerical calculations, the Hilbert space for the on-site
part of the Hamiltonian is fixed by imposing a maximum
occupation number �nmax. As the first lobe is characterized
by an insulating phase with n � 1 particle per site, we
choose �nmax � 3 in this case; the dimension of the Hilbert
space per site becomes d � 20. We have checked, by
increasing the value of �nmax, that this truncation of the
Hilbert space is sufficient to compute the first lobe. In each
DMRG iteration, we keep up to m � 300 states in order to
guarantee accurate results. The numerical calculations of
the second lobe (n � 2 particles per site) have been per-
formed with �nmax � 4 (which corresponds to d � 35).

Phase Diagram.—In the insulating phase, the first ex-
cited state is separated from the ground state by a Mott gap.
In the limit of zero hopping, the gap is determined by the
extra energy �E� needed to place or remove a boson at a
given site. The finite hopping renormalizes the gap, which
will vanish at a critical value. Then the system becomes
superfluid. This method has been employed for the spinless
case by Freericks and Monien [27] and in Refs. [25,26],
where it was combined with the DMRG. Here we use it for
the spinor case. Three iterations of the DMRG procedure
are performed, with projections on different number sec-
tors; the corresponding ground states give the desired en-
ergies E0, E� � E0 � �E�. As target energies, we used
those obtained by the mapping of the Bose-Hubbard sys-
tem into effective models as described in Ref. [10]. We
considered chains up to L � 128 sites for the first lobe and
L � 48 for the second lobe. The extrapolation procedure to
extract the asymptotic values was obtained by means of
linear fit in 1=L, as discussed in Ref. [26]. A comparison
with a quadratic fit shows that O�1=L2� corrections are
negligible on the scale of Fig. 1.

The plot of the phase diagram in the ��; t� plane for
different values of the spin coupling U2 is shown in Fig. 1.
The first lobe tends to reduce its size on increasing the spin
coupling; in particular, the upper critical chemical poten-
tial at t � 0 is ��c �0� � 1� 2U2, while the t� value of the
hopping strength over which the system is always super-
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fluid is suppressed as U2 increases. On the other hand, the
second lobe grows up when U2 increases. This even or odd
effect, predicted in Ref. [8], is quantified in Fig. 1.

Magnetic properties of the first Mott lobe.—The first
lobe of the spinor Bose lattice has a very interesting
magnetic structure. In the presence of small hopping, t
boson tunneling processes induce effective pairwise mag-
netic interactions between the spins, described by a
Hamiltonian [10]:

Ĥ eff � �
X
hiji

	cos��Ŝi 
 Ŝj� � sin��Ŝi 
 Ŝj�2�; (2)

with

tan� �
1

1� 2U2
� �

2t2

1�U2

��������������������
1� tan2�

p
: (3)

The absence of higher order terms, such as �Ŝi 
 Ŝj�3, is due
to the fact that the product of any three spin operators can
be expressed via lower order terms. In the case of anti-
ferromagnetic interaction in Eq. (1), the parameter � varies
in the interval � 2 	�3=4�;��=2	. Because of the form
of the magnetic Hamiltonian, each bond tends to form a
singlet-spin configuration, but singlet states on neighbor-
ing bonds are not allowed. There are two possible ground
states that may appear in this situation. A nematic state can
be constructed by mixing states with total spin S � 0 and
S � 2 on each bond. This construction can be repeated on
neighboring bonds, thereby preserving translational invari-
ance. This state breaks the spin-space rotational group
O�3�, though time-reversal symmetry is preserved. The
expectation value of any spin operator vanishes (hŜ�i i �
0, � � x; y; z), while some of the quadrupole operators
4-2
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FIG. 3. Dimerization order parameter D near the ferromag-
netic boundary: The solid line shows a power law fit D� ���
�F�


 of numerical data with 
 ’ 6:15; the dashed line shows an
exponential law fit D� exp	�a=��� �F�

�1=2� with a ’ 2:91.
The linear fit is done over data for � <�0:7�, while the
exponential fit is for � � �0:73�. DMRG calculations are
performed with up to m ’ 300 states. Inset: Extrapolated scaled
gap �2�0 � �L� 1��E2 � E0� at the thermodynamic limit, close
to �F.
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have finite expectation values. The tensor Qab � hŜaŜbi �
2
3�

ab is a traceless diagonal matrix, due to invariance under
spin reflections. Since it has two identical eigenvalues
(h�Ŝxi �2i � h�Ŝ

y
i �

2i � h�Ŝzi �
2i), it can be written as Qab �

Q�dadb � 1
3�

ab� using an order parameter hQ̂i � h�Ŝzi �
2i �

h�Ŝxi �
2i � 3

2 h�Ŝ
z
i �

2i � 1 and a unit vector d � �z.

However, since 	Q̂;Ĥ eff� � 0, it is not possible to get
Q � 0 in finite-size systems, analogously to what happens
for the magnetization without external field. Therefore, we
characterized the range of nematic correlations in the
ground state by coupling this operator to a fictitious ‘‘ne-

matic field,’’ Ĥ � � Ĥ eff � �Q̂, and by evaluating the
nematic susceptibility 	nem as a function of L:

	nem � �
d2E0���

d�2

����������0
�
X



jQ0;
j
2

E
 � E0
; (4)

where E0��� is the ground energy of Ĥ �; Q0;
 is the
matrix element between the ground and an excited state

of Ĥ eff (respectively, with energy E0 and E
).
On the other hand, a possibility to have a SO�3� sym-

metric solution stems from breaking translational invari-
ance. Indeed, a dimerized solution with singlets on every
second bond satisfies these requirements. Dimerization
could be described by looking at the differences in expec-

tation values of pair Hamiltonian Ĥ
�ij�
eff on adjacent links

(Ĥ eff �
P
hijiĤ

�ij�
eff ) [28]. The order parameter D reads

D � jhĤ
�i�1;i�
eff � Ĥ

�i;i�1�
eff ij: (5)

It has been proposed [16] that a narrow nematic region
exists between the ferromagnetic phase boundary (�F �
�3�=4, i.e., U2 � 0) and a critical angle �C  �0:7�
(i.e., U2 � 10�2), whereas a dimerized solution is favored
in the remaining antiferromagnetic region �C � � �
��=2. This implies that the dimerization order parameter
D should scale to zero in the whole nematic region. This
possibility has been analyzed in Ref. [18], where it was
suggested that D might go to 0 exponentially near the
ferromagnetic boundary, making it difficult to detect the
effective existence of the nematic phase. This interesting
challenge has motivated numerical investigations with dif-
ferent methods [18,19,21,22]. We present new DMRG
results which clarify the magnetic properties of the first
Mott lobe (for sufficiently small hopping) and, conse-
quently, of the biquadratic Heisenberg chain.

According to our numerical calculation, there is no
intermediate nematic phase; indeed, we found a power
law decay of the dimerization order parameter near �F �
�3�=4. The simulations of the bilinear-biquadratic model
(2) are less time and memory consuming than Bose-
Hubbard ones, since the local Hilbert space has a finite
dimension d � 3. The number of block states kept during
the renormalization procedure was chosen step by step in
24040
order to avoid artificial symmetry breaking. This careful
treatment insures that there are no spurious sources of
asymmetry such as partially taking into account a proba-
bility multiplet. Here we considered up to m ’ 300 states
in order to obtain stable results. Raw numerical data are
shown in Fig. 2, where the finite-size dimerization parame-
ter D�L� is plotted as a function of the chain length L [see
Eq. (5) and Ref. [28]]. Finite-size scaling was used to
extrapolate to the thermodynamic limit. After the extrapo-
lation to the L! 1 limit (see Fig. 3), we fitted the dimer
order parameter with a power law
4-3
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D �
�
�� �F
�0

�


; (6)

where 
� 6:1502 and �0 � 0:091 77� (Fig. 3, solid line).
We also tried to fit our data by an exponential law

D � D0e
�a=

���������
���F
p

(7)

as suggested in Ref. [18], with a� 2:911,D0 � 9:617; this
fit seems to work for narrower regions (Fig. 3, dashed line);
however, from our numerics, we cannot exclude an expo-
nential behavior of D in the critical region. The dimerized
phase thus seems to survive up to the ferromagnetic phase
boundary, independently from the chosen fitting form. This
is also confirmed by the fact that the scaled gap between
the ground state E0 and the lowest excited state E2 (which
is found to have total spin ST � 2) seems not to vanish in
the interesting region � >�0:75� (see inset in Fig. 3).

Moreover, we analyzed the susceptibility of the chain to
nematic ordering 	nem. The numerical data, presented in
Fig. 4, show a power law behavior 	nem�L� / L

� as a
function of the system size. The exponent � (shown in
the inset) approaches the value � � 3 as �! �F. This can
also be confirmed by means of a perturbative calculation
around the exact solution available at �F; indeed, one
obtains jQ0;
j

2 � L2 and �E
 � E0� � L�1 to be inserted
in Eq. (4). The increase of the exponent for �! �F in-
dicates, as suggested in Ref. [21], that a tendency towards
the nematic ordering is enhanced as the dimer order pa-
rameter goes to zero.

Conclusions.—In this Letter, we analyzed, by means of
a DMRG analysis, the phase diagram of the one-
dimensional spinor boson condensate on an optical lattice.
We determined quantitatively the shape of the first two
Mott lobes and the even or odd properties of the lobes. We
furthermore discussed the magnetic properties of the first
24040
lobe. Our results indicate that the Mott insulator is always
in a dimerized phase.

This work was supported by IBM and by the Euro-
pean Community through Grants No. RTNNANO and
No. SQUBIT2.
4-4
*Electronic address: http://qti.sns.it
[1] B. P. Anderson and M. A. Kasevich, Science 282, 1686

(1998); F. S. Cataliotti et al., ibid. 293, 843 (2001); S.
Burger et al., Phys. Rev. Lett. 86, 4447 (2001); O. Morsch
et al., ibid. 87, 140402 (2001).

[2] D. Jaksch and P. Zoller, Ann. Phys. (N.Y.) 315, 52 (2005).
[3] A. Minguzzi et al., Phys. Rep. 395, 223 (2004).
[4] M. Greiner et al., Nature (London) 415, 39 (2002).
[5] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[6] M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).
[7] For a review of spinor condensates, see D. M. Stamper-

Kurn and W. Ketterle, in Coherent Atomic Matter Waves,
Proceedings of the Les Houches Summer School, Session
LXXII, edited by R. Kaiser, C. Westbrook, and F. David
(Springer, New York, 2001).

[8] E. Demler and F. Zhou, Phys. Rev. Lett. 88, 163001
(2002).

[9] S. K. Yip, Phys. Rev. Lett. 90, 250402 (2003).
[10] A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. A

68, 063602 (2003).
[11] F. Zhou and M. Snoek, Ann. Phys. (N.Y.) 308, 692 (2003).
[12] L. M. Duan, E. Demler, and M. D. Lukin, Phys. Rev.

Lett. 91, 090402 (2003).
[13] A. A. Svidzinsky and S. T. Chui, Phys. Rev. A 68, 043612

(2003).
[14] A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. Lett.

93, 120405 (2004).
[15] M. Snoek and F. Zhou, Phys. Rev. B 69, 094410 (2004).
[16] A. V. Chubukov, Phys. Rev. B 43, 3337 (1991).
[17] Y. Xian, J. Phys. Condens. Matter 5, 7489 (1993).
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