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Traditionally, frequency dependent evolutionary dynamics is described by deterministic replicator
dynamics assuming implicitly infinite population sizes. Only recently have stochastic processes been
introduced to study evolutionary dynamics in finite populations. However, the relationship between
deterministic and stochastic approaches remained unclear. Here we solve this problem by explicitly
considering large populations. In particular, we identify different microscopic stochastic processes that
lead to the standard or the adjusted replicator dynamics. Moreover, differences on the individual level can
lead to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can

even invert the direction of the evolutionary process.
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Darwinian evolution represents an intrinsically fre-
quency dependent process. The fitness or reproductive
output of an individual is not only linked to environmental
conditions but also tightly coupled to the type and fre-
quency of its competitors. Evolutionary game theory [1-4]
has become a powerful framework to investigate the evolu-
tionary fate of individual traits with differing competing
abilities. Consider a population of two types A and B. The
fitness (or payoff) of the two types depends on their
interaction partners and is determined by the payoff matrix

A B
A a b. (n
B ¢ d

Traditionally, the dynamics of such systems is investigated
in the context of the well-known replicator equation [2—4],
a deterministic differential equation describing the change
in frequency of the two (or more) types in infinite popula-
tions. For two types, this results in four basic scenarios of
coevolutionary dynamics [5], while complex dynamics can
arise in higher dimensions [6].

In nature, however, populations are finite in size, and the
deterministic selection process is augmented and disturbed
by stochastic effects and random drift. This has long been
recognized by population geneticists and goes back to the
seminal work by Wright [7] and Fisher [8]. Assuming a
finite but constant population size, the balance between
selection and drift can be described by the Moran process
[9]. The microscopic dynamics consists of three simple
steps: (i) selection, an individual is randomly selected for
reproduction with a probability proportional to its fitness;
(i) reproduction, the selected individual produces one
(identical) offspring; (iii) replacement, the offspring repla-
ces a randomly selected individual.

The Moran process allows one to derive the fixation
probability of mutant genes or investigate the effect of
population structures on the fixation probability [10]. Ori-
ginally, the Moran process was formulated in a frequency
independent setting where the fitness of an individual is
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genetically determined and remains unaffected by interac-
tions with other individuals as in Ref. [11]. Only recently,
the frequency dependent approach of evolutionary game
theory and the Moran process have been successfully
combined in order to investigate the evolutionary dynamics
in finite populations [12,13]. The fitness of an individual
now comprises two components: the frequency indepen-
dent baseline fitness which is associated with genetic pre-
disposition and the frequency dependent contribution from
interactions with other members of the population.

Thus, evolutionary dynamics can be described by a
continuous deterministic replicator equation or by a sto-
chastic microscopic description of a birth-death process
such as the Moran process. So far, the relation and tran-
sition between the two approaches remained unclear. We
show that different replicator dynamics are associated with
different microscopic processes and, moreover, that the
dynamics derived for infinite populations may undergo
qualitative changes in finite populations.

If every individual interacts with a representative sample
of the population, the average payoff of A and B individu-
als will be determined by the fraction of coplayers of both
types. Excluding self-interactions, this leads to the payoffs

a(i — 1) + b(N — i)
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where i is the number of A individuals and N is the
population size.

The effective reproductive fitness of an individual of
type k is then given by 1 — w + war¥, where w determines
the relative contributions of the baseline fitness, which is
conveniently normalized to one, and the payoffs ¥ result
from interactions with other individuals [12]. Thus, w cor-
responds to the strength of selection acting on the game
under consideration. Note that any w << 1 can be mapped to
a system with a different payoff matrix and w = 1 [14]. For
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the Moran process, the probability that the number of A
individuals increases from i to i + 1 is

1—w—i—w77'f1 i N—1i
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whereas it decreases from i to i — 1 with probability
) l—w+wab i N—i
(i) = C))

l—-w+wm)N N

(m;)y = (mi + 7B8(N — i))/N is the average payoff in the
population.

Note that the selection mechanism in the Moran process
requires perfect global information on the current state of
the population. This is a very strong requirement and in
many situations undesirable. Therefore, we propose an
alternative formulation for the microscopic processes en-
tirely based on local information: In each time step, a
randomly chosen individual b compares its payoff to the
payoff of another randomly chosen individual a. It
switches to the other’s strategy with probability

1 w T, — T
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where A, is the maximum possible payoff difference
and 0 <w = 1 measures the strength of selection. Note
that, in contrast to the Moran process, the local update is
invariant under linear rescaling of the payoff matrix. The
transition matrix for the number of A individuals i in this
process is given by
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In both processes, the number of A individuals remains
constant with probability 7°(G) =1—T%@) — T (i).
Further, the states i = 0 and i = N are absorbing.

We can directly compute the probability that a single A
individual fixates in the population, ¢,. In general, this
probability is given by [15]

1
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In the limit of weak selection, w < 1, the fixation proba-
bilities can be computed analytically [16]. The fixation
probability for the Moran process is higher than for the
local update mechanism if A7, > 2.

The stochastic process can be formulated in terms of the
master equation [17,18]

PG = P (i) =P (i — DTG — 1) — P"()T (i)
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where P7(i) is the probability that the system is in state i at
time 7. Introducing the notation x = i/N, t = 7/N, and
the probability density p(x, ) = NP"(i) yields

px,t+ N ) —px,t)=px—NLTT*(x— N
+px+NLHT (x+ N1
= pl, )T (x) — p(x, NT " (x).

For N > 1, the probability densities and the transition
probabilities are expanded in a Taylor series at x and t.
Neglecting higher order terms in N~!, we get [17]
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with alx) =T (x) — T (x) and b(x) =
J/N)[T7(x) + T~ (x)]. Note that, for large but finite N,
this equation has the form of a Fokker-Planck equation.
Since the internal noise is not correlated in time as sub-
sequent update steps are independent, the 1t6 calculus [17]
can be applied to derive a Langevin equation

x = a(x) + b(x)&, 9

where £ is uncorrelated Gaussian noise and b(x) = 0 for
x = 0 and x = 1. The multiplicative noise term leaves the
absorbing nature of the boundaries unaffected. Quali-
tatively similar results are obtained by introducing noise
in the payoff matrix [19,20]. In contrast, to account for
stochastic effects through additive noise [21,22] is prob-
lematic because of the boundaries of x.

For N — oo, the diffusion term b(x) vanishes with 1/+/N
and a deterministic equation is obtained. For the Moran
process, this yields

(=T i N—i
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where 74 (x) = xa + (1 — x)b, 78(x) = xc + (1 — x)d,

and (m(x)) = x7*(x) + (1 — x)7B(x). I' =122 is essen-

tially the baseline fitness. Equation (10) is the adjusted

replicator dynamics introduced in Ref. [3]; an alternative

derivation for imitation dynamics is given in Ref. [23].
For the local update mechanism, we find

L. 7T’lf‘—77'?iN—i_ _
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where k = w/Ar,,, is a constant factor influencing the
time scale only. Equation (11) is the standard replicator
equation and represents the traditional approach to evolu-
tionary dynamics in infinite populations [4]. The difference
between the two dynamics amounts to a dynamic rescaling
of time which leaves the fixed points unchanged. Never-
theless, the differences in the microscopic updating can
give rise to substantial differences in the macroscopic
dynamics. To illustrate this, let us consider two famous
examples: the Prisoner’s Dilemma [24] and Dawkins’
Battle of the Sexes [25].

238701-2



PRL 95, 238701 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 DECEMBER 2005

The Prisoner’s Dilemma describes the problem of coop-
eration where two players simultaneously decide whether
to cooperate (C) or defect (D). Cooperation incurs costs ¢
and produces a benefit b to the other player (b > c¢),
whereas defection neither costs nor benefits anyone. In
this game, defection is dominant because defectors are
better off no matter what the other player does. Thus,
rational players end up with nothing rather than earning
the more favorable payoff for mutual cooperation—hence
the dilemma. The Prisoner’s Dilemma is determined by the
payoff matrix

D C
D ¢ b+c (12)
c 0 b

where we added ¢ in order to avoid negative payoffs.
Figure 1 compares the evolution from a state with a small
fraction of defectors into the evolutionary end state with
defectors only. The standard replicator dynamics for the
Prisoner’s Dilemma is given by X = w ;< x(1 — x), where
x is the fraction of defectors. The solution yields
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FIG. 1. Prisoners Dilemma: (a) Approach to the Nash equilib-

rium from an initial state with 10% defectors for simulations of
the Moran process (O) and the local update rule (A) with N =
200 as compared to numerical solutions of the corresponding
adjusted replicator dynamics (dashed line) and the standard
replicator dynamics (solid line), respectively. The dynamics
based on the Moran process converges much faster to the
equilibrium state x* = 1. (b),(c) Convergence of the stochastic
simulations (O,A) and the corresponding Langevin equations
(dashed and solid lines) to the deterministic adjusted and stan-
dard replicator dynamics for increasing population sizes N.
(b) Deviations of the mean fraction of defectors at time ¢,
[depicted in (a) by the arrows] where the corresponding (ad-
justed) replicator dynamics predicts x(z;) = 0.5; (c) same for the
variance of the mean fraction of defectors. The results for the
simulations and the Langevin equation are in excellent agree-
ment. Both the deviations and the variance converge to the
deterministic dynamics with 1/N (dotted line), as expected (b =
1, ¢ = 0.5, w = 0.9, time scale for simulations 1/N, averages
over 10° realizations).

x() = xolxg + (1 = xp)e wre/bHI1 (13)

with x(0) = x and x(t — 00) = x* = 1. The adjusted rep-
licator dynamics can be solved only numerically for the
given payoff matrix and general w. For w >0, Fig. 1
illustrates that the convergence to x* = 1 is faster for the
adjusted replicator dynamics as compared to the standard
replicator dynamics.

Dawkins’ Battle of the Sexes [25,26] is a cyclic game
referring to asymmetric conflicts in parental care: If males
(@) are philanderers (B 3), it pays for females (Q) to be coy
(Ag), insisting on a long courtship period to make males
invest more in the offspring. However, once most males are
faithful (A 8)’ fast females are favored (Bo), avoiding the
costs of courtship. Subsequently, the male investment into
the offspring is no longer justified, philanderers are again
favored (B 8)’ and the cycle continues. This is character-
ized by the payoff matrix

Ag By
Az (+1,-1) (=1,+1) (14)
By (=1,+1) (+1,-1)

where the first element is the payoff of the males and the
second element is the payoff of the females [3]. Note that
this game is also called “Matching Pennies” [22,28].

The dynamics of Dawkins’ Battle of the Sexes is quali-
tatively different for the adjusted and the standard repli-
cator dynamics [3]. Comparisons of the deterministic
dynamics to the corresponding stochastic process in finite
populations reveal further interesting differences. For the
standard replicator dynamics H = —x(1 — x)y(1 — y),
where x is the fraction of faithful males and y the fraction
of coy females, is a constant of motion which measures the
distance from the Nash equilibrium q = (3, ). Conse-
quently, q is a neutrally stable fixed point surrounded by
periodic orbits. Figure 2 shows that this is a spurious result
valid only in the limit N = Ng = Nz — oo. For any finite
N, H >0 holds and every trajectory spirals away from q.
Note that in this case H is approximated by (AH) =
(H(t + 1) — H(z)), which is calculated for a single stochas-
tic update step and averaged over many realizations. In
contrast, the adjusted replicator dynamics leads to H =< 0,
where equality holds only at the Nash equilibrium q. H
represents a Lyapunov function with q as the unique and
asymptotically stable interior fixed point. Interestingly, for
finite N, i.e., for the Moran process, the drift towards q
changes sign: Below a critical population size N,.(w), q is
unstable and the trajectories spiral again towards the
boundary. However, for N > N_.(w), q becomes stable;
cf. Fig. 2. Similar qualitative changes based on population
sizes have recently been reported in Refs. [13,29].

In conclusion, we presented a mathematically consistent
transition from descriptions of the microscopic processes
relevant for individual based simulations over stochastic
approximations of the dynamics in finite populations to a
deterministic mean field theory governed by replicator
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FIG. 2. Battle of the Sexes: (a) Average drift in a finite popu-
lation for different population size N and fixed w = 0.3 for the
local update mechanism (A) and the Moran process (O). For
(AH) <0, the system spirals to the Nash equilibrium q; for
(AH) > 0, it spirals towards the absorbing boundaries. For the
local update process, AH — 0 with 1/N (see inset), which hints
at the constant of motion in the limit N — oo (see text). For the
Moran process, the system drifts towards the boundaries below a
critical population size N, (marked by the arrow) but approaches
q for N> N,_.. (b) The critical population size N, (where
(AH) = 0) decreases as a function of the selection pressure w
(N =No = Néx, averages over 107 realizations).

dynamics. In particular, we have shown that the intrinsic
stochasticity arising in finite populations can be captured
by a Langevin term in the replicator dynamics. This leads
naturally to absorbing boundaries in the resulting stochas-
tic differential equation. Both the microscopic processes
and their stochastic approximation converge with 1/N to
the solution of the corresponding replicator equation.

The frequency dependent Moran process [12] is inti-
mately connected to the adjusted replicator dynamics [3].
Conversely, the proposed local update rule corresponds to a
finite population equivalent of the standard replicator dy-
namics [4]. While the qualitative dynamics of the two
approaches is the same, quantitative differences vanish
only upon nonlinear rescaling of time. However, for inter-
acting (sub)populations, such rescaling is no longer pos-
sible and can give rise to entirely different qualitative
dynamics. In particular, for Dawkins’ Battle of the Sexes,
we have shown that, for the Moran process, the stability of
the mixed Nash equilibrium depends on the population size
such that it becomes unstable below a critical size and no
mixed population can persist.

John Maynard Smith asked whether the adjusted or the
standard replicator dynamics is more appropriate to de-
scribe evolutionary changes [3]. Here we have shown that
this is fully determined by the underlying microscopic
processes.
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