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Kayaking and Wagging of Rods in Shear Flow
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For the first time, we have simulated the periodic collective orientational motions performed by rigid
liquid-crystalline polymers with large aspect ratio in the nematic state in shear flow. In order to be able to
do so, we developed a new, event-driven Brownian dynamics technique. We present the results of
simulations of rods with aspect ratios L/d ranging from 20 to 60 at volume fractions ¢ given by Lo/d =
3.5 and 4.5. By studying the path of the director, i.e., the average direction of the rods, we observe
kayaking, wagging, flow aligning, and log-rolling type of orbits, depending on the parameters of the
simulation and the initial orientation. We find that the tumbling periods depend on L¢/d and the shear
rate but not on the type of motion. Our simulation results qualitatively confirm theoretical predictions and
are in good agreement with the experimental measurements of tumbling times of fd viruses.
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Single elongated rigid particles in a shear flow described
by V(r) = yyés, with r = xé, + yé, + zé,, trace out
Jeffery orbits named after the scientist who first described
this motion [1]. For example, a particle initially aligned
along the flow axis €, will start to rotate in the shear plane,
i.e., the xy plane, with a period depending on both the
aspect ratio of the particle and the shear rate. Particles
whose long axes initially make nonzero angles with the
shear plane perform motions akin to that of the paddles of
somebody kayaking. It is to be expected that in a dense
system of elongated particles in shear flow the particles
will strongly interact and will not be able to perform
Jeffery motion independently of each other. If there is
any tumbling at all, this has to be performed by the
particles collectively. It is this rather spectacular motion
that we have investigated by means of Brownian dynamics
simulation and that we address in this Letter.

The dynamics of dense systems of elongated particles in
shear flow was first investigated from a theoretical point of
view independently by Hess [2] and Doi [3]. The central
object of their investigation was the director, which is the
unit vector fi pointing along the average direction of the
long axes of all particles. A particle with long axis @
running through a Jeffery path 1,(¢) may be characterized
by a time dependent probability density P(d, 1) = 5(& —
0,(r)) where & is a Dirac delta function on the two-
dimensional unit sphere. The corresponding evolution
equation may serve as starting point to derive the equation
governing the evolution of the probability density P(f, )
of the director of a dense system of elongated particles. To
this end we must add to the original evolution equation
terms which account for perturbations of the Jeffery paths
caused by the interactions between particles and by the
random kicks exerted by the solvent molecules on these
particles. Doing so, we arrive at the Smoluchowski equa-
tion first derived by Hess and Doi.

The initial motivation for deriving the Doi-Hess equa-
tion was to obtain expressions relating the aspect ratio of

0031-9007/05/95(23)/237802(4)$23.00

237802-1

PACS numbers: 61.30.Cz, 61.30.Vx, 83.10.Mj

the particles to the various coefficients occurring in the
phenomenological theory by Ericksen [4] and Leslie [5].
The latter theory, in combination with results obtained by
means of the Doi-Hess equation, has been very successful
in describing the rich rheology of dense rodlike particles
systems. Besides describing rheology, solutions of the Doi-
Hess equation provide detailed molecular information
which is difficult to obtain experimentally. Over the last
two decades the following picture has emerged: at low
shear rates and sufficiently high volume fractions, all par-
ticles collectively tumble in the shear plane [6—8] or
perform Jeffery type of motions [9] called kayaking.
Tumbling is only observed if the director is initially in
the shear plane. Recently, however, it has been claimed
[10] that tumbling always is unstable with respect to
kayaking. With increasing shear rates tumbling and kayak-
ing go over into wagging [8—10] and finally into a shear
aligned state [6—10]. In the wagging state the director
periodically moves up and down in the shear plane in a
symmetrical way about the flow direction. In the shear
aligned state the director is arrested [8] in the shear plane
making a fixed nonzero angle with the flow direction.
There is one more stationary state, one in which the direc-
tor is initially aligned along the vorticity direction, i.e., the
z axis, and remains there; this state is called the log-rolling
state. For a more complete description of all possible
motions and their dependence on the initial state, we refer
to Hess and Kroger [11,12] and references given there.
Recently, a thorough analysis of the predictions of the Doi-
Hess equation, avoiding any additional approximation not
implicit in the use of the Doi-Hess equation, has been
published by Forest et al. [13,14].

The Doi-Hess equation from which the above picture
has emerged is based on a number of approximations
which were itemized by Dhont and Briels [15]. Recently
we have shown by means of Brownian dynamics simula-
tions that, at low volume fractions of suspended rods, these
have severe consequences for the predictions made by the
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theory [16]. In particular, the theory neglects dynamic
correlations between neighboring rods and it may therefore
be questioned if it is capable of correctly describing col-
lective motions in dense systems. Moreover, although pe-
riodic responses have been observed in rheological
experiments [17-19], no simple measurements exist dis-
criminating between the various kinds of periodic motions.
In this situation, computer experiments simulating the full
N-particle Fokker-Planck equation will be of great value.
Only very few attempts in this direction have been under-
taken. Brownian dynamics simulations by Doi et al.
[20,21] are restricted to elongated particles in the semi-
dilute isotropic state. The simulations of Mori et al. [22,23]
do address the dense state, but are restricted to particles
with aspect ratio equal to 3. In the first case, overlap
between particles was prohibited by very steep, short range
lubrication forces, in the second case by a Gay-Berne
potential. Such forces become increasingly difficult to
handle with increasing aspect ratio and volume fraction.
We therefore set out to develop a new, event-driven
Brownian dynamics algorithm which efficiently handles
dense systems of Brownian hard rods, and to perform
simulations of such systems in shear flow. The novelty of
the code is in the fact that its time evolution is controlled by
collisions, like in time of flight molecular dynamics simu-
lations, and not by a potential preventing overlaps.

The simulation was done by means of an event-driven
Brownian dynamics code neglecting hydrodynamic inter-
action between rods. During each time step At the rods
were propagated from position r(z) to

r(t+ At)=r@) + I'-r()Ar + 6r(2) (1)

while their orientations were changed from () to
(s + A =) +[I—a@a@] T-a@)Ar + 8a(r),
(2)

where I' is a matrix with I',, = 7 and all remaining

elements equal to zero and I is the unit matrix. The random
displacements and reorientations were drawn according to

(6r(1)ér(1)) = 2k TE ' ()AL, 3)

(s(nda()y = 2ksTy, '[1 — G(Ga(]AL, (4

where
E = yaa@) + y [1 - a@a)] (5)
. 77'7;L3 . 2mnL _ 5
Vr—m, Y —m, YL = &Y
(6)

with 7 the viscosity of the solvent and T the temperature.
Equation (6) is sufficiently accurate for the large aspect
ratios used in this Letter. After each time step all pairs were
checked for possible overlaps. For each overlapping pair,

the collision time ¢ + A.At was detected by interpolation
between ¢ and r + Ar using the already chosen random
displacements and reorientations, but with Af replaced by
A At. Next the pair was propagated to the point of contact
and the remaining part of the time step was completed in a
similar way. Results of simulations at low volume fractions
were in excellent agreement with those of previous simu-
lations [16] using conventional Brownian dynamics using
stiff potential interactions to prevent overlaps between the
rods. The current code, however, is more efficient and can
be operated at higher densities and larger aspect ratios.

In Fig. 1 we present four snapshots of a simulation box
containing 1750 rods with aspect ratio L/d =25 at a
volume fraction ¢ determined by L¢/d = 3.5. For all
simulations discussed in this Letter the diameter d =
0.0148 um, so the length L = 0.37um in this case. The
solvent is always water with viscosity 7 = 1 mPas and
temperature T = 300 K. A time step Az was chosen equal
to 0.5 ws.

The boxes shown in Fig. 1 were sheared with shear rate
¥ = 125 s~ 1. In frame (a) the rods are on average aligned
along the flow direction. Half of each rod is light gray, the
other half dark gray. The coloring is chosen such that for
each rod in frame (a) the dark part is to the right of the light
part. As time advances the rods collectively rotate such that
the dark parts point southeast in frame (b) and southwest
somewhat later in frame (c). Finally in frame (d) the rods
are aligned along the flow direction again, but now with
their dark parts to the left of the light parts; i.e., they made a
turn of 180° around the z axis. Since the particles are
symmetric, this state is indistinguishable from the original
state (a). We stress that the tumbling of the rods is not the
result of a rotation of the whole box, but that it is really a
rotation of the individual rods performed collectively,

(d)

FIG. 1 (color online). Snapshots of a simulation box with rods
collectively changing orientation by 180°. The four snapshots
are taken at the times indicated as (a), (b), (c), and (d), respec-
tively, in the upper part of Fig. 2. The box contains 1750 rods of
which only 500 are shown in each frame, so the density is 3.5
times as high as it appears from the pictures.
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without appreciably changing position except along the
flow direction.

The details of the motion can hardly be seen from a time
series of snapshots like in Fig. 1. Therefore we plot in
Fig. 2 the three components 7, 71, and 7, of the director n
together with the order parameter as a function of time. At
each time the order tensor S = N~ 'S 6,(na; (1) — 4 I was
calculated and diagonalized. The eigenvector with the
largest eigenvalue is the director n(r) = A (r)é, +
iiy(t)é, + 71, (1)€, and is characteristic for the average di-
rection of the long axes of the particles. The corresponding
eigenvalue is the order parameter P,, which is equal to zero
if the rods have random orientations and equal to one in
case the rods are all pointing in the same direction. The x
component of the director is seen to periodically change
from +1 to —1 and back again. This confirms what we
inferred from inspection of Fig. 1.

More interesting is the time evolution of 71, and 71,. At
those time spans when 71, is changing from +1 to —1 or the
other way round, 7, drops from about —0.25 to about
—0.75 and returns to —0.25 again. At the same time 7,
alternatingly drops from zero to about —0.75 and returns to
zero or rises from zero to +0.75 in order to return to zero
again. This behavior is indicative of the motion called
kayaking. Note that the motion is such that the average
orientation remains to be along the flow direction for a
while and that the actual flip to the reverse orientation
occurs during a rather short time span. The results pre-
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FIG. 2 (color online). Order parameter P, (thick solid line) and
director components 7, (solid line), 7, (dashed line), and 7,
(dotted line) as a function of time. The upper and the lower
figures illustrate the kayaking and wagging motions, respec-
tively. In this figure are also indicated the times at which the

snapshots in the upper part of Fig. 1 were taken.

sented in this figure and elsewhere in this Letter have been
confirmed with simulation boxes with volumes twice, four
and eight times as large as the present one.

We now summarize our findings on the basis of a large
number of simulations with L/d ranging from 20 to 60 for
two values of L¢/d and 7 ranging from 30 to 1000 s~ '. A
detailed description will be published elsewhere. At low
shear rates and for all initial conditions except when ini-
tially the director is aligned along the vorticity direction,
the system ends up kayaking with a period which depends
on 7 and on L¢/d. In particular, tumbling turns out to be
unstable with respect to kayaking except maybe for the
smallest aspect ratio. A picture of the path traced out by the
director during one period is drawn in Fig. 3(a) as well as in
the upper part of Fig. 2. At intermediate shear rates and for
the same initial conditions, the director moves towards the
shear plane in order to perform a wagging motion, as
illustrated in the lower part of Fig. 2 and Fig. 3(b). The
small value of 7, indicates an in-plane motion and the
alternation of 71, around zero denotes the wagging along
the shear direction. There seems to be no abrupt change of
the period at the kayaking-to-wagging transition. At even
higher shear rates the director gets arrested in the shear
plane making a nonzero angle with the x axis. In case the
director initially starts along the vorticity direction, it ends
up performing small rotations around its initial direction.
At high enough shear rates, this state becomes unstable and
the director moves towards the shear plane where it gets

()

FIG. 3 (color online). The path on the unit sphere traced out by
the director of a kayaking (a) and wagging (b) box of rodlike
particles with L/d = 25 and Lo/d = 3.5. The arrows attached
to the y axis represent the flow field.
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FIG. 4 (color online). Simulated and experimental tumbling
times 7T as a function of the shear rate y at a volume fraction ¢
determined by L¢/d = 4.5. Experiments were done [24] on the
fd virus for which L/d = 60 and d = 0.0148 um like in our
simulations.

arrested in the same unique state, for the given shear rate,
where all other systems end. So it turns out that the results
obtained so far are in qualitative agreement with the pre-
dictions of the Doi-Hess theory. Many more simulations
will be needed to construct a phase diagram as has been
done on the basis of the Doi-Hess equation [11-14].

As a quantitative test of our simulation method, we plot
in Fig. 4 the tumbling time T as a function of shear rate y
for all simulations with Lo /d = 4.5. In the same plot we
present experimental results on the fd virus [24], which has
an effective diameter equal to the one that we have used
and for which L/d = 60. Using a molar weight of 1.64 X
107 g/M [25], our simulations correspond to a density of
13.6 mg/ml while the experimental density is 13 mg/ml.
Our results, when extrapolated to the experimental shear
rates, are larger than the experimental ones by a factor of at
most 1.5. Since the fd virus is slightly flexible, its tumbling
periods are expected to be smaller [26] than those of the
stiff particles which were used in the simulations, hence we
consider the agreement good. It will be interesting to
investigate if the difference between the slopes of the
experimental and the simulated curves may also be attrib-
uted to this difference in flexibility. As a second test we
mention that for L/d = 60, the transition from kayaking to
wagging was found to occur between y = 27.8 and
30.1 s~!, whereas the experimental transition occurs at
v = 30 s~ ! when the density is 14 mg/ml [24].

From Fig. 4 we infer that the tumbling period is propor-
tional to 1/, the constant of proportionality only depend-
ing on L¢/d. Now consider two neighboring rods
displaced along the y axis over a distance /. During a period
T they get displaced along the flow direction over a dis-
tance T+yl. Apparently, in order to synchronize the tum-
bling of all rods, a neat correlation must exist between the
rotational motions and the relative displacements of the
rods along the flow direction.
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