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Magnetic Moments and Adiabatic Magnetization of Free Cobalt Clusters
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Magnetizations and magnetic moments of free cobalt clusters CoN (12<N < 200) in a cryogenic
(25 K � T � 100 K) molecular beam were determined from Stern-Gerlach deflections. All clusters
preferentially deflect in the direction of the increasing field and the average magnetization resembles
the Langevin function for all cluster sizes even at low temperatures. We demonstrate in the avoided
crossing model that the average magnetization may result from adiabatic processes of rotating and
vibrating clusters in the magnetic field and that spin relaxation is not involved. This resolves a long-
standing problem in the interpretation of cluster beam deflection experiments with implications for
nanomagnetic systems in general.
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Why is a ferromagnetic particle attracted to a magnet?
The answer is simple for large particles but it is quite
subtle for clusters containing only a few atoms. Isolated,
ferromagnetic clusters in molecular beams are attracted
to the high-field pole of a Stern-Gerlach (SG) magnet
[1–6]. This does not happen for single atoms because
spatial quantization of the spin S along the magnetic field
B (combined with angular momentum conservation)
causes discrete magnetization states m � 2�BSz (�S �
Sz � S). Since the force on the atom is F � mdB=dz,
deflection maxima are symmetric: half of the atoms are
attracted (deflect in the �z) and half are repelled. This is
conveniently visualized in the Zeeman diagram of an atom
[Fig. 1(a)]. By definitionm � �dE=dB, so that states with
negative slope deflect toward the high field and vice versa
[7]. Since clusters deflect asymmetrically there is a funda-
mental difference in the way clusters deflect compared
with atoms.

The total spin SN of CoN is (approximately) SN � NS1

where S1 is 1" and the magnetic moment �N � 2N�B [2].
Individual clusters deflect uniquely in the high-field direc-
tion so that for each clusterm> 0. This means that the spin
tends to align with the magnetic field. Strikingly as shown
below, the average magnetization MN of a beam of CoN
appears to follow the Langevin function [8,9] L�x� �
MN=�N � tanhx� 1=x, where x � �NB=kT, T is the
temperature, and B is the field strength. Note that for
small x, L�x� � x=3; for large x, L�x� � 1.

Since the Langevin function results from the thermody-
namic equilibrium of a (large) spin in a magnetic field in a
heat bath [Fig. 1(a)], suggesting that the spin thermally
relaxes while in the magnetic field. This implies thermal-
izing transitions between magnetic sublevels, Fig. 1(a).
The spin-relaxation model for free clusters was previously
assumed [3,4,10] in analogy with the well-known super-
paramagnetic model of supported small ferromagnetic par-
ticles [8]. However, for the thermal relaxation process to
occur in isolated clusters requires that the heat bath is
internal to the cluster. It further implies a relaxation time,
�, which, in order to be effective, must be short compared
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with the transit time through the magnet tmag � 100 �s. A
large, warm cluster may serve as a thermal bath for its own
spin, particularly when many vibrational and electronic
modes are excited. However, when T < TDebye=N

1=3 and
T < TFermi=N (TDebye � 450 K and TFermi � 8� 104 K)
[9] then most of the clusters are in their vibrational and
electronic ground states [11,12] and this picture should
break down. Nevertheless, we experimentally show that
Langevin-like behavior is observed for all clusters at all
temperatures.

A beam of cold cobalt clusters is produced in a laser
vaporization cluster source [11,13] consisting of a cryo-
genically cooled chamber (�0:5 cm3) with an exit
nozzle (�1 mm diameter). A pulse of cold He gas is
injected into the chamber as focused light from a pulsed
laser vaporizes a minute amount of cobalt from a cobalt
rod in the chamber. The vapor condenses into clusters.
The clusters dwell in the chamber for about 1 ms after
which the thermalized clusters are ejected into a high
vacuum chamber [2,3,11]. The resulting cluster beam is
collimated and passes through a SG magnet (B � 2 T,
dB=dz � 0:25B T=cm; magnet length Lmag � 6 cm)
situated 1 m from the source. The clusters then enter a
position sensitive time-of-flight (TOF) mass spectrometer
[11,13] situated LTOF � 1 m downstream from the magnet
which simultaneously measures their deflections d and
their masses m. Velocities v are determined using a
chopper. The magnetization is determined from dN �
mN�dB=dz�LmagLTOF=massNv2

N .
Hence, the magnetization mN�B� of every individual

cluster is determined. Figure 2 shows the deflections and
the magnetization distribution of Co20 for T � 40 K.
Notice the broad magnetization distribution: mN=N �
0–2�B. The 3D plot [Fig. 2(b)] of mN=N for 12 �
N � 200 at T � 40 K for B � 2:0 T qualitatively shows
Langevin-like behavior (�N � 2N�B so that x �
2N�BB=kT); however, the magnetization distributions
are broad and they do not significantly narrow for larger
clusters.
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FIG. 1 (color). Schematic Zeeman diagram of a cluster (S �
2) for various couplings. (a) Spin 2 cluster coupled to a heat bath
causing transitions at a rate � between the 2S� 1 Zeeman
levels (examples are indicated by arrows). If the transition
time � � 1=� is such that �
 tmag (the time of passage through
the magnet) then the SG deflection pattern consist of 2S� 1
symmetrically positioned deflection maxima as in the uncoupled
case. However, if �� tmag, the 2S� 1 maxima collapse in a
single deflection maximum in the direction of increasing field

[the width of the peak �M=� �
�����������������
��=tmag�

q
], and peak position

follows the Brillouin function (that converges to the Langevin
function for large S). (b) Spin coupled to the rotations (all
levels in this schematic diagram have the same Jz � Rz � Sz).
If the spin is uncoupled from the rotations then the deflections
are as in (a). (c) Now the spin is coupled to the rotations causing
avoided crossings. Note that all of the adiabatic Zeeman levels
tend downward with increasing field, indicating increasing mag-
netization with increasing field causing single-sided deflections.
The Zeeman levels are canonically populated in the source
(temperature T; B � 0). The levels follow their adiabatic paths
into the magnet (B � Bmag) and the clusters deflect according to
their magnetizations m, i.e., the slope of the levels at Bmag (for
real clusters, the separation between avoided crossings is so
small that the measurement averages over several of them.)
The average magnetizations for large S are Langevin-like: for
low fields, M � �2B=3kT (� � 2�BS) and for large fields
M � � independent of the density of states. The magnetiza-
tion distribution width depends primarily on the density of states
(see text).
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Figure 3 shows that the average magnetization MN is a
universal function of x: in Fig. 3(a) M100=�100 is plotted
for a wide range of fields and temperatures. Figure 3(b)
shows that this trend is followed for all clusters from N �
20 to 300. These data show that they fall on a curve, which
linearly rises for small x (M � C1x) and saturates for large
x 	M�x
 1� � �sat�; in fact, C1=�sat � 1=3 so that for
small x, MN � �Nx=3 as predicted by the Langevin func-
tion. However, the approach to saturation appears to be
faster than predicted.

Accordingly, the magnetic moments of cobalt clusters
are evaluated from the magnetization data. The magnetic
moments per atom �N=N [Fig. 3(c)] are enhanced com-
pared with the bulk value (�bulk � 1:7�B=atom [9]). The
enhancement has been attributed to the lower coordination
of the surface atoms [2] since the consequent reduced
overlap of the majority and minority spin bands enhances
the magnetic moment.

Previously the Langevin function was assumed for rela-
tively warm clusters in molecular beams in the small x
limit. Here we empirically demonstrated its validity not
only in that case but even for small clusters at low tem-
peratures in the small x and the large x limit. This needs to
be explained. For supported superparamagnetic particles
FIG. 2 (color). Deflections and magnetization distributions of
CoN at T � 40 K and B � 2 T. (a) Position sensitive TOF mass
peak of Co20 showing the field off (dashed line) and the field on
(B � 2 T, solid line) deflections (the entire spectrum is com-
posed of about 200 distinct mass peaks). Note the single-sided
deflections. (b) (inset) The normalized magnetization probabil-
ity distribution determined from the deflections in (a) N � 20;
M=N � 0:83�B; �=N � 2:3�B; x � 1:5; �M=� � 0:4.
(c) Normalized magnetization distributions of CoN (12 � N �
200, T � 40 K, B � 2 T). Amplitudes are represented in color
(blue: low; red: high). The magnetization is linear with N for
small N and saturates at about ��N� � 2N�B for large N.
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FIG. 3. Magnetic moments �N and normalized magnetizations
MN=�N of CoN . (a) MN=�N of Co100 for 25 K � T � 100 K
and 0<B � 2 T, corresponding to x ranging from 0.4 to 12. The
data scale with x. Note the linear increase for small x:
M100=�100 � 0:3x and M100=�100 � 1 for large x. The trend
is consistent with the Langevin function (bold line); however, the
Langevin function approaches saturation more slowly.
(b) MN=�N for 12 � N � 200, 20 K � T � 100 K and B �
2 T measured in 63 data sets (9 temperatures from 25 K to 100 K
and 7 fields from 0 to 2 T, representing about 10 000 data points),
plotted as a function of x. (c) Magnetic moments per atom for
CoN . Note that �12=12 � 2�B, �N=N increases to a maximum
at N � 37 followed by a gradual decrease with weak oscillations
converting to 2�B for N � 150.
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the Langevin function results from spin relaxation as in-
dicated in Fig. 1(a) [8]. Does spin relaxation also occur in
isolated clusters that are in their vibrational and electronic
ground states? First note that if the spin thermally relaxes
when the cluster is in the magnet then the width of the

magnetization distribution �M=� �
�����������������
��=tmag�

q
where

tmag � Lmag=v � 0:09=
����
T
p

s. The observed broad widths
indicate that � � tmag. However, �M=� does not show the
expected sensitivity to tmag (using various magnet lengths,
and various beam velocities) nor does �M=� vary signif-
23720
icantly with T or with N. Hence
�����������������
��=tmag�

q
cannot account

for the widths. Consequently, thermal relaxation involving
transitions between Zeeman levels [Fig. 1(a)] cannot ex-
plain this observation. The origin of the Langevin-like
behavior should be sought elsewhere.

We next show that Langevin-like behavior can be natu-
rally explained without invoking spin relaxation by con-
sidering the consequences of an interaction of the spin with
rotations. The following abbreviated discussion of the
avoided crossing model illustrates the principles [14].
Consider the restricted Zeeman diagram of a spin S cluster
in Fig. 1(b) which schematically depicts the Zeeman levels
of the lowest rotational states with the same (i.e., con-
served) Jz � Rz � Sz where R is the rotational angular
momentum [7,15]. The separation between rotational lev-
els is (on average) C0 � "2=2I where I is the moment of
inertia [7,15]. If the spin and the rotation are decoupled
then the levels cross [Fig. 1(b)]. However, if they are even
weakly coupled then in principle all crossings are avoided
[7,15]. This has a profound effect on the magnetization
since the resulting adiabatic Zeeman levels [Fig. 1(c)] all
tend downward with increasing field and their slopes satu-
rate atm � � [Fig. 1(c)]. This means that [after averaging,
see below and [16] ] all levels have positive magnetization
which explains the single-sided deflections.

Specifically, consider a cluster that is created in the
source (B � 0) in a heat bath at temperature T after which
it is thermally isolated and then introduced in a magnetic
field (B � B1). This cluster occupies a level which it adia-
batically follows from B � 0 to B � B1. For small B1 the
magnetization vanishes (since the average slope vanishes)
while for large B1 it saturates at M � � (the slope tends to
��). This explains in principle how the spin-rotation
coupling causes deflections in the high-field direction with-
out invoking spin relaxation. This process is adiabatic and
does not involve a relaxation time nor coupling to a heat
bath. Note that similar adiabatic deflection processes have
been previously proposed for specific cases [17–19].

The average magnetization for weak fields is obtained
with little effort. Consider the point E�B� in the Zeeman
diagram [Fig. 1(b)]. In the uncoupled Zeeman diagram
Euc�B� � Euc�0� �mB (� � 2�BS; M � 2�BSz; �S �
Sz � S). In the coupled Zeeman diagram all crossings are
avoided [Fig. 1(c)]. The slope at E�B� in the coupled
diagram equals the average of all the slopes of levels
passing through Euc�B� in the uncoupled diagram [20].
Hence, for large S
�hdE=dBi � m�E;B� �
Z �

��
m��E�mB�dm=

Z �

��
��E�mB�dm; m�E;B! 0� �

�2B
3��E�

@��E�
@E

; (1)

where ��E� is the (restricted) density of states at B � 0. The average adiabatic magnetization M is found by thermally
populating the states in zero field and measuring the average magnetization in field B:

M�B� �

R
m�E;B���E�e�E=kTdER

��E�e�E=kTdE
�
�2B
3kT

�
�x
3
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Note that the average magnetization does not depend on
��E�. Furthermore, for high fields, M�B� ! �. This re-
markable result demonstrates that both the average low-
field and high-field magnetization follow the Langevin
function; however, spin relaxation in the magnet is not
required. [For finite S the integral in Eq. (1) is replaced
by a sum yielding M�B� � 2S�S� 1��2

BB=3kT: the low-
field limit of the Brillouin function.]

Intermediate fields require knowledge of the density of
states. Assuming that ��E� / E� then numerical calcula-
tions show that M�B� rapidly asymptotically approaches
the Langevin function as the number of independent occu-
pied modes in the cluster � is increased (as it will with
increasing cluster size). The widths of the distribu-
tions �M=� qualitatively correspond with observations.
For example, for � � 1, �M=� � 0:4 for x � 0:5 to 5.
Hence the rather large observed widths are also explained.

The coupled Zeeman diagram discussed here is a special
case of the energy level spectrum of irregular systems
discussed by Berry [21] and Pechukas [22], where level
repulsions cause energy levels with approximately the
same energy to have approximately the same slope. The
ferromagnetic clusters studied in this Letter are examples
of irregular systems where couplings cause energy levels to
become approximately parallel.

We next address an important detail: if the gap at an
avoided crossing is very small then there is a finite proba-
bility that the gap is ‘‘jumped’’ (i.e., the gap is ignored) in
the measurement. The nonadiabatic transition probability
is given by the Landau-Zener [23] equation:

p � exp
�
�

��2

2gBjm�m
0jdB=dt

�
;

where p is the probability for a nonadiabatic transition, m
and m0 are the magnetizations of the intersecting Zeeman
levels, and dB=dT is the rate of change of the magnetic
field in the deflection field: in our experiments dB=dT <
2 T=s. Hence, p � 0 for a gap with �
 10�8 eV, and
the crossing is traversed adiabatically; if �� 10�8 eV,
p � 1 and the gap is traversed nonadiabatically; if
� � 10�8 eV, the probability p is significantly removed
from those extremes causing irreversible behavior. It
can be shown that if the gap sizes are random then our
conclusions still hold. Significant deviations only occur
when �� 10�8 eV for essentially all of the gaps, in
which case the spin is effectively uncoupled. In that case,
spin alignment does not occur.

We have experimentally demonstrated that the
Langevin-like average magnetization of ferromagnetic
cluster beams is a property of the ensemble of isolated
clusters in the beam, not of the individual clusters.

This phenomenon may be more general: it may sup-
plement superparamagnetic relaxation (which involves a
relaxation time) in supported ferromagnetic clusters espe-
cially when the coupling to the support is weak. In that case
the rotations are replaced with soft vibrational and tor-
23720
sional modes of the cluster on its support, and should
produce a Langevin-like adiabatic response. Furthermore,
the magnetization changes at avoided crossing (substitut-
ing the rotations with oscillations in the anisotropy wells)
may be an alternative way to represent the magnetization
transitions in magnetic molecules that are often viewed as a
tunneling process between magnetic states of the molecule.
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