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Supersolid Phase of Hard-Core Bosons on a Triangular Lattice
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We study properties of the supersolid phase observed for hard-core bosons on the triangular lattice near
half-integer filling factor, and the phase diagram of the system at finite temperature. We find that the solid
order is always of the �2m;�m0;�m0� with m changing discontinuously from positive to negative values
at half filling, in contrast with phases observed for Ising spins in a transverse magnetic field. At finite
temperature we find two intersecting second-order transition lines: one in the 3-state Potts universality
class and the other of the Kosterlitz-Thouless type.
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FIG. 1. Schematic phase diagram of Eq. (1) near half-integer
filling factor.
Since the supersolid state of matter was introduced to
physics nearly half a century ago and its theoretical feasi-
bility was demonstrated [1], there has been a long history
of experimental attempts to find it in nature [mostly in 4He,
see, e.g., Ref. [2] ] along with numerical simulations and
theoretical predictions for models of interacting lattice
bosons. Recent years have seen a renewed interest in this
topic. On the one hand, lattice bosons are no longer in the
realm of idealized models and can be now studied in
controlled experiments with ultracold atoms in optical
potentials [3]. On the other hand, the nonclassical moment
of inertia observed for solid 4He samples in the torsional
oscillator experiments by Kim and Chan [4] remains
largely a mystery.

Hard-core bosons on triangular lattice with nearest-
neighbor repulsion V > 0 and hopping t > 0 represent
one of the simplest (and thus most promising from the
experimental point of view) models displaying a supersolid
phase in an extended region of the phase diagram. The
model Hamiltonian is given by:
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Here b̂yi is the bosonic creation operator, n̂i � b̂yi b̂i, and �
is the chemical potential. A triangular lattice of N � L�
L sites, with periodic boundary conditions, is assumed. The
alternative formulation of (1) in terms of quantum spin-1=2
variables ŝi, namely,
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provides a useful mapping to the XXZ magnet. The super-
fluid state of Eq. (1) for t� V corresponds to the
XY-ferromagnetic state of Eq. (2), while the solid state of
bosons is equivalent to magnetic order in the ẑ direction. At
half-integer filling factor, n�� � 3V� � 1=2, the model
has an exact particle-hole symmetry.

A robust confirmation of early mean-field predictions of
a supersolid phase in the ground state of (1) [5] was
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obtained by means of Green function Monte Carlo
(GFMC) simulations [6]. The supersolid phases identified
in that study for densities away from half filling (i.e., for
�=V > 3 and �=V < 3) can be viewed as solids, with
filling factors � � 2=3 and � � 1=3, doped with holes
and particles, respectively. In what follows, we denote
them as supersolids A and B. Density correlations in
A and B have

���
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p
�

���
3
p

ordering with the wave vector
Q � �4�=3; 0�. In A and B the average occupation
numbers on three consecutive sites along any of the
principal axes follow the sequence ��2m;m0; m0� and
�2m;�m0;�m0�, respectively (it is conventional to count
densities from 1=2 to make connection with the magneti-
zation in the spin language, mi � ni � 1=2); see Fig. 1.

The model (1) has been investigated in a series of re-
cent papers, making use of advanced numerical techniques
[7–9]. The proposed zero-temperature phase diagram is
similar to that of Ref. [6], with the notable addition of a
quantum superfluid-supersolid phase transition at n � 1=2
and t=V � 0:115 and the stable supersolid state persisting
for smaller values of t=V. In Ref. [6] the system was
thought to remain a disordered superfluid for arbitrary
t=V. The discrepancy can be attributed to known limita-
tions of the GFMC method [10].
4-1 © 2005 The American Physical Society
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FIG. 2 (color online). Probability distributions P�n�� for dif-
ferent system sizes and temperatures at �=V � 3 and t=V � 0:1.

PRL 95, 237204 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005
Based on field-theoretic, exact diagonalization, and
other arguments, Ref. [8] hints at the possibility of the
�m; 0;�m� density order in the ground state at n � 1=2
(state C). These considerations involved, in particular,
an analogy between the properties of Eq. (2), and those
of the Ising antiferromagnet on the triangular lattice, in
the presence of a transverse magnetic field [11]. If true,
there should exist quantum A� C and C�B phase
transitions away from half filling and three finite-
temperature transitions of the Kosterlitz-Thouless (KT)
type. Though Ref. [7] finds that the ground state is of the
A or B type, it makes similar predictions for the finite-
temperature phase diagram at n � 1=2 which follow from
the assumption that spontaneous symmetry breaking be-
tween A, B, and their lattice translations is described by
the six-clock model [12].

In what follows, we provide strong evidence that the
supersolid state at half filling is always of either the A or
B type. Our data suggest that there is a discontinuous
transition from A to B at � � 3V similar to the I-order
phase transition (driven by the large energy of the A�B
domain walls). What makes it special is the exact particle-
hole symmetry; structure factor, superfluid density, and
energy remain continuous functions of � through the
transition line. For the supersolid A (or B) with the
threefold degenerate ground state, one expects to see the
normal-superfluid KT and the solid-liquid 3-state Potts
transitions, as temperature is increased. Moreover, the
KT and Potts transitions are independent of each other
and for n � 1=2 intersect on the phase diagram. The fail-
ure of the mean-field description and analogies with the
transverse-field Ising model to predict the supersolid struc-
ture at n � 1=2 can be traced back to the U(1) symmetry of
Eqs. (1) and (2), as noticed in [7]. For example, the
�1; 0;�1� state cannot be the true ground state at finite t
in the limit of t=V ! 0 simply because it does not respect
the particle conservation law.

We use the worm-algorithm Monte Carlo scheme in the
lattice path-integral representation [13] to simulate Eq. (1).
Since the structure factor
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does not distinguish between supersolids A, B, C we
adopt the following strategy: for each system configura-
tion, we compute the distribution of time-averaged occu-
pation numbers, �nk � ��1

R�
0 d�n̂k���, and use it to

determine the fraction of sites with �nk > 1=2

n� � N�1
XN
k�1

�� �nk � 1=2�; (4)

where ��x� is the Heaviside function. A, B, C density
structures correspond to n�A � 2=3, n�C � 0, and n�B �
1=3. Finite systems are characterized by broad probability
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distributions P�n��, and the formation of different solid
orders can be seen as the development of sharp peaks, as
the thermodynamic limit is approached.

In Fig. 2 we show the evolution of the P�n�� distribution
for the half-filled system at V=t � 10, i.e., close to the
superfluid-supersolid transition point, estimated [7–9] at
V=t � 8:5. The distribution is peaked at n� � 0 in the
smallest system considered (L � 6), but, as the system size
is increased, the weight is shifted toward the wings of the
distribution. For L � 18, there are already three peaks with
comparable height. Finally, in the L � 24 system we ob-
serve only two peaks corresponding to the supersolid
phases A and B. Though the probability density between
the peaks is still measurable, the dynamics of the algorithm
becomes very slow; it typically takes millions of
Monte Carlo sweeps in order for the system to make a
transition from the A to the B structure and vice versa. We
have explicitly verified that configurations with n� � 2=3
and n� � 1=3 have density orders depicted as in Fig. 1,
with a large contrast in density between sublattices. We
have also checked that the V=t � 10, L � 48, T � t=50
system spontaneously develops either A or B order, start-
ing from the initial configuration corresponding to the
superfluid phase at V=t � 5.

In Fig. 3 we show what happens at larger values of V=t.
Now, the central peak is already absent in relatively small
L � 12 and L � 18 systems. We thus conclude that the
nature of the supersolid state at half-integer filling factor is
determined by the A and B structures, for all values of
t=V for which a supersolid phase exists.

If spontaneous symmetry breaking of the ground state
degeneracies is described by the six-clock model [12], one
should observe three finite-temperature transitions for sys-
tems near half filling, and a solid phase with algebraic
correlations ‘‘sandwiched’’ between the solid and normal
liquid phases. This prediction was made in Ref. [7] for n �
1=2. Since the ground state was found here to be only of the
A or B type, and we do not see why domain wall energies
between translated A states are the same as between A
and B states [in fact, the Landau theory prediction [7,8,14]
4-2
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FIG. 3 (color online). Probability distributions P�n�� for dif-
ferent system sizes and temperatures at �=V � 3 and t=V �
0:05.
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is that A and B states phase separate and have different
average densities even at � � 3V], the finite-temperature
phase diagram should instead feature the normal-
superfluid KT and the liquid-solid 3-state Potts (for n �

1=2) transitions breaking U(1) and translation symmetry,
respectively. At n � 1=2 we expect only one liquid-solid
transition. An interesting question is whether transition
lines simply intersect, or there are bicritical and tricritical
points and I-order lines as observed for the similar model
on the square lattice [15]. We performed simulations for
two representative cases, one for constant chemical poten-
tial �=V � 2:74 (or density n � 0:44), and the other for
constant t=V � 0:1.

In Fig. 4 we show typical data for the KT transition
between the solid and supersolid phases. The transition is
smeared by logarithmic finite-size effects, but the critical
temperature can be still determined with good accuracy by
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FIG. 4 (color online). Superfluid density in the vicinity of the
KT transition for t=V � 0:1 and �=V � 2:74. The solid line is
the thermodynamic curve calculated using Eq. (6) with ��T�
deduced from the plot shown in the inset. Inset: solutions of
Eq. (5) for different pairs of system sizes: L2 � 24, L1 � 12
(filled circles), L2 � 48, L1 � 12 (open circles), L2 � 48, L1 �
24 (filled squares). The dashed line is the linear fit � � 1�
1:03�Tc � T�=t with Tc=t � 0:50.
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utilizing the well-known renormalization flow and the
universal jump of the superfluid density, �s, at Tc. The
data analysis is as follows [16]: we define R � ��s=2mT
(where m � 1=3t is the effective mass for the triangular
lattice) and study the finite-size scaling of the data using
KT renormalization group equations in the integral form

4 ln�L2=L1� �
Z R1

R2

dt

t2�ln�t� � �� � t
: (5)

The microscopic (system size independent) parameter � is
an analytic function of temperature, and the critical point
corresponds to R � 1 at � � 1. For T < Tc, the thermody-
namic curve is defined by the equation

1=R� lnR � ��T�; (6)

with � � 1� �0�Tc � T�. We use different pairs of system
sizes in Eq. (5) to determine the ��T� curve, and obtain the
location of the critical point from ��Tc� � 1. The results
are shown in the inset of Fig. 4. Data collapse and smooth
analytic behavior of ��T� proves that the transition is
indeed of the KT type. We used the same protocol and
system sizes to determine other critical points.

In Fig. 5, we present our data for the transition into the
state with the long-range density order. For the threefold
degenerate B structure this transition is expected to be in
the 3-state Potts universality class. The critical exponents
are known exactly [17]: � � 5=6 and � � 1=9. We thus
perform the data collapse using L2�SQ � f�	L1=�� where
	 � �T � Tc�=t and Tc is the only fitting parameter. The
result is shown in the inset of Fig. 5. This confirms the
above-mentioned expectation, and establishes that there is
only one transition to the solid phase (there are no visible
finite-size effects below Tc).

Finally, we compute the phase diagram in the �T=t; t=V�
(at constant �=V � 2:74) and �T=t;�=V� (at constant
t=V � 0:1) planes and observe that KT and Potts transition
lines form a simple cross for n � 1=2; i.e., the correspond-
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FIG. 5 (color online). Structure factor in the vicinity of the 3-
state Potts transition for t=V � 0:1 and �=V � 2:74. Inset: data
collapse using exact critical exponents for the 3-state Potts
model [17] and 	 � �T � Tc�=t with Tc=t � 1:035.
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ing order parameter fields are not strongly interacting, see
Fig. 6. The transition temperature to the superfluid and
supersolid states in this part of the phase diagram is deter-
mined by the hopping amplitude. Within the statistical
uncertainties of our calculation, KT and Potts transition
temperatures cannot be distinguished at �=V � 3.

We did not see evidence for the algebraic solid state at
� � 3V. The finite-size scaling for the supersolid-solid
transition at � � 3V is consistent with the 3-state Potts
universality, though the data collapse is not as impressive
as in Fig. 4 (the other alternative is the KT transition).

It is instructive to understand why the �m; 0;�m� phase
for the Hamiltonian (1) is not an obvious ground state. At
the mean-field level, C has a better energy than A or B.
For the transverse-field Ising model [11] the �1; 0;�1� spin
arrangement is obtained by orienting the middle spin along
the magnetic field direction, i.e., putting it in the equal-
amplitude superposition of up and down states. In bosonic
language, it corresponds to the superposition of states with
one or zero particles on a given site. Such a state can not be
reconciled with the Hamiltonian (1) which conserves the
particle number. Any noninteger average occupation num-
ber necessarily involves hopping transitions to the nearest-
neighbor sites. In the �1; 0;�1� structure the middle site is
completely surrounded by the fully occupied or empty sites
and thus cannot be the ground state of the system even in
the limit of t=V ! 1. The problem appears to be inher-
ently quantum with no obvious solution at the mean-field
level.
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