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Quantum Nucleation in a Single-Chain Magnet
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The field sweep rate �v � dH=dt� and temperature �T� dependence of the magnetization reversal of a
single-chain magnet is studied at low temperatures. As expected for a thermally activated process, the
nucleation field (Hn) increases with decreasing T and increasing v. The set of Hn�T; v� data is analyzed
with a model of thermally activated nucleation of magnetization reversal. Below 1 K, Hn becomes
temperature independent but remains strongly sweep rate dependent. In this temperature range, the
reversal of the magnetization is induced by a quantum nucleation of a domain wall that then propagates
due to the applied field.
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Recent efforts in synthetic chemistry have led to a
quickly growing number of magnetic systems that show
slow relaxation of magnetization. Apart from interest in
applications in, for instance, ultrahigh density magnetic
recording, such systems are ideal to test theories. A well-
known example is the single-molecule magnet (SMM) that
exhibits slow magnetization relaxation of their spin ground
state, which is split by axial zero-field splitting [1,2].
SMMs are among the most promising candidates for ob-
serving the limits between classical and quantum physics
[3]. A more recent example is the single-chain magnet
(SCM) [4–6] showing slow relaxation of magnetization
as the consequence of the uniaxial anisotropy seen by each
spin on the chain and magnetic correlations between spins.
Although it seemed that there was a reasonable agreement
between the experimental data and Glauber’s theory of a
1D Ising spin chain [7], it was shown that several other
arguments should be considered to fill the gap between the
theory and the experimental results [8]. The most impor-
tant arguments concerned the introduction of magnetic
anisotropy and finite-size effects. Indeed, their influence
on the static and dynamic properties of the SCMs was
confirmed experimentally [8–11].

Quantum tunneling of domain walls in a 1D mesoscopic
ferromagnetic sample was theoretically investigated
[3,12–17] and crossover temperatures between the classi-
cal and quantum regime were predicted. Domain wall
nucleation and depinning were studied in single Ni wires
and showed indeed a flattening of the temperature depen-
dence of the mean switching field (Hsw) below about 5 K
[18] and 1 K [19]. Because of surface roughness and
oxidation, the domain walls of a single wire were trapped
at pinning centers. The pinning barrier decreases with an
increase of the magnetic field. When the barrier is suffi-
ciently small, thermally activated escape of the wall oc-
curs. A flattening of the temperature dependence of Hsw

and a saturation of the width of the switching field distri-
bution were observed. The authors proposed that a domain
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wall escapes from its pinning site by thermal activation at
high temperatures and by quantum tunneling below Tc �
5 K [18] and 1 K [19]. However, such crossover tempera-
tures are about 3 orders of magnitude higher than the Tc

predicted by current theories [16]. The propagation of a
domain wall across an energy barrier in a domain wall
junction was also studied and preliminary investigations
seems to indicate the possibility of quantum tunneling
below 0.7 K [20].

In this Letter, we show that tunneling can occur in truly
1D systems like SCM provided that a driving field is
applied that lowers the energy barrier. Indeed in zero
applied field, the probability of tunneling is negligible
due to the exponential increase of the correlation length.

The studied SCM is a heterometallic chain of MnIII and
NiII metal ions: [Mn2�saltmen�2Ni�pao�2�py�2��ClO4�2
(saltmen2� � N; N0 � �1; 1; 2; 2 � tetramethylethylene�
bis�salicylideneiminate�; pao� � pyridine-2-aldoximate;
py � pyridine), called Mn2Ni chain henceforth [5,9]. At
low temperatures, this compound can be described as a
chain of ferromagnetic coupled S � 3 [MnIII-NiII-MnIII]
units.

The spin system of the Mn2Ni chain can be described by
an anisotropic Heisenberg model:

H � �J
X
i

~Si ~Si�1 �D
X
i

S2
i;z � g�B�0

X
i

~Si ~H; (1)

where J is the ferromagnetic exchange constant between
the spin units and D is the single-ion anisotropy. D=kB �
2:5 K was obtained from magnetization measurements as a
function of a magnetic field applied perpendicular to the
easy axis [8]. ac and dc relaxation time measurements
showed a unique relaxation time over 10 decades. Above
2.7 K, the thermal dependence of the relaxation time
followed an Arrhenius law with an activation energy of
74 K. Below 2.7 K, a departure from this simple behavior
was observed and a smaller activation energy of 55 K was
found around 2 K [8]. The crossover at about 2.7 K was
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interpreted as the manifestation of finite-size effects [8].
Indeed, the activation energy of the relaxation time should
decrease from �4J�D�S2 to �2J�D�S2 at the tempera-
ture where the correlation length equals the chain length
[8]. The exchange energy J=kB � 1:56 K was found which
was in agreement with independent thermodynamical mea-
surements. A saturation of a semilog plot of �T versus 1=T
was used to estimate the mean chain length of about 100
Mn2Ni units.

The relaxation rate at H � 0 is extremely small below
1.4 K. We applied therefore a magnetic field to study the
low-temperature relaxation process. The magnetization
measurements were performed by using (i) a magnetome-
ter consisting of several 10� 10 �m2 Hall bars and (ii) an
array of micro-SQUIDs [21] on top of which a single
crystal of Mn2Ni was placed, for higher and lower fields
than 1.4 T, respectively. The field was aligned with the easy
axis of magnetization using the transverse field method
[21].

Typical hysteresis loops are presented in Fig. 1. The
Mn2Ni chain displays smooth hysteresis loops which are
strongly temperature and field sweep rate dependent. The
temperature and field sweep rate dependences of the co-
ercive fields (called mean nucleation fields Hn henceforth)
were measured and plotted in Fig. 2. As expected for a
thermally activated process, Hn increases with decreasing
temperature T and increasing field sweep rate v �
dHz=dt. Furthermore, all our measurements showed an
almost logarithmic dependence of Hn on the field sweep
rate (inset of Fig. 2). Hn becomes temperature independent
below about 0.5 K.

We analyzed the set of Hn�T; v� data with a model of
thermally activated nucleation of magnetization reversal
analogous to that of a magnetic single-domain particle
[22–25]. ac and dc relaxation measurements at ~H � 0
showed that the magnetization reversal below 2.7 K is
dominated by the ends of the Mn2Ni chain [8]. At suffi-
ciently low temperatures and at zero field, the energy
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FIG. 1 (color online). Hysteresis loops for the Mn2Ni chain at
0.04 and 1.4 K and at several field sweep rates.
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barrier between the two states of opposite magnetization
is much too high to observe a reversal. However, the barrier
can be lowered by applying a magnetic field in the opposite
direction to that of the chain’s magnetization. When the
applied field is close enough to the nucleation field of a
domain wall, thermal fluctuations are sufficient to allow
the system to overcome the nucleation barrier, and a do-
main wall nucleates. Then, due to the applied field, the
magnetization of the entire chain reverse via a domain wall
propagation process. The domain wall nucleation can be
thermally activated at high temperatures or driven by
quantum tunneling at low temperatures [12–17].

This stochastic nucleation process can be studied via the
relaxation time method consisting of the measurement of
the probability that the magnetization has not reversed
after a certain time. In the case of an assembly of identical
and isolated spin chains, it corresponds to measurements of
the time dependence of magnetization. The probability that
the magnetization has not reversed after a time t is given
by:

P�t� � e�t=� (2)

and � can be expressed by an Arrhenius law of the form:

��T;H� � �0e
�E�H�=kBT; (3)

where �E�H� is the field dependent nucleation energy
barrier and �0 is a prefactor which is supposed to be a
constant. In most cases �E�H� can be approximated by:

�E�H� 	 E0�1� h��; (4)

where h � H=H0
n , H0

n is the nucleation field at zero tem-
perature, E0 is roughly the nucleation barrier height at zero
applied field, and � is a constant of the order of unity [for
most cases 1:5 
 � 
 2 [26] ].

There are two limiting cases: (i) for D� J, the nuclea-
tion energy barrier can be calculated exactly [25,27,28]:
0

1

2

3

4

5

0 0.5 1 1.5 2

0.140 T/s
0.035 T/s
0.004 T/s

µµµµ 0
H

n
 (

T
)

T (K)

0

1

2

3

0.01 0.1

µµµ µ 0
H

n 
(T

)

µµµµ0dHz/dt (T/s)

0.04 - 0.4 K

0.6 K
0.8 K

1 K

1.2 K

1.4 K

1.8 K

1.6 K

2.0 K
2.2 K 2.4 K

FIG. 2 (color online). The mean nucleation field Hn for the
Mn2Ni chain as a function of temperature and (inset) field sweep
rate.
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FIG. 3. (a) Scaling plot of the mean nucleation field Hn�T; v�
for field sweep rates between 0.001 and 0:14 T=s and several
temperatures: 0.04 K and from 0.2 to 2.6 K in steps of 0.1 K.
(b) Same data of Hn�T; v� and same scales but the real tempera-
ture T is replaced by an effective temperature T (see inset)
which restores the scaling below 1.1 K.
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�E�H� � 2k
����������
2JD
p

�tanhR� hR�; (5)

where R � arcosh�
��������
1=h

p
� and k � 1 or 2 for the nucleation

at the ends or insight the chain, respectively. For h � 0,
this energy is the well-known energy of one or two domain
walls, respectively. For h! 1, �E�H� 	 4k=3

����������
2JD
p

�1�
h�3=2; (ii) for J � 0, the spins are decoupled and we have
the case of a Stoner-Wohlfarth particle [29,30] with uni-
axial anisotropy. When the field is applied along the easy
axis of magnetization, all constants can be determined
analytically [22,29]: � � 2, E0 � KV, and the switching
field H0

sw � 2K=Ms, where K is the uniaxial anisotropy
constant, V is the particle volume, and Ms is the saturation
magnetization. For SMMs with dominating uniaxial an-
isotropy: � � 2, E0 � DS2, and H0

sw � 2DS=g�0�B. In
our case of the Mn2Ni chain with D=kB � 2:5 K and
J=kB � 1:56 K we are not aware of an analytical expres-
sion and propose to use � � 2 because of the arguments
developed in [26].

In order to study the field dependence of the relaxation
time ��T;H� and to obtain the parameters of the model, the
decay of magnetization has to be studied at many applied
fields H and temperatures T. This is experimentally very
time consuming. A more convenient method for studying
the magnetization decay is by ramping the applied field at a
given rate and measuring the mean nucleation field Hn

which is the field value to obtain zero magnetization (co-
ercive field). Hn is then measured as a function of the field
sweep rate and temperature (Fig. 2). An analogous proce-
dure [12,31,32] was applied to nanoparticles [33] and
recently to SMMs [34]. The mean nucleation field of an
assembly of identical noninteracting SCMs is given by
[35]:

Hn�T; v� 	 H0
n

�
1�

�
kT
E0

ln
�
c
v

��
1=�

�
; (6)

where the field sweeping rate is given by v � dHz=dt; H0
n

is the nucleation field at zero temperature, and c depends
on the details of the approximations: c � H0

nkBT=
��0�E0�1�Hn=H0

c �
��1� in [33], c0 � H0

n�E0=kT�1=�=
��0�� in [32], and it can be taken constant when the exact
value of �0 is not needed. We applied the three approx-
imations to nanoparticles [33] and to SMMs [34] and found
that the first approximation gives a �0 which is closest to
that extracted from an Arrhenius plot.

The validity of Eq. (6) was tested by plotting the set of
Hn�T; v� values as a function of �Tln�c=v��1=2 where c �
H0

nkBT=�02E0�1�Hn=H0
n�. If the underlying model is

sufficient, all points should collapse onto one straight
line by choosing the proper values for the constant �0.
We found that the data of Hn�T; v� with T > 1 K fell on
a master curve provided �0 � 7:4� 10�9 s (Fig. 3).

At lower temperatures, strong deviation from the master
curves are observed. In order to investigate the possibility
that these low-temperature deviations are due to escape
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from the metastable potential well by tunneling, a common
method for classical models is to replace the real tempera-
ture T by an effective temperature T�T� in order to restore
the scaling plot [3,33,34,36]. In the case of tunneling,
T�T� should saturate at low temperatures. Indeed, the
ansatz of T�T�, as shown in the inset of Fig. 3(b), can
restore unequivocally the scaling plot demonstrated by a
straight master curve [Fig. 3(b)]. The flattening of T

corresponds to a saturation of the escape rate, which is a
necessary signature of tunneling. The crossover tempera-
ture Tc can be defined as the temperature where the quan-
tum rate equals the thermal one. The inset of Fig. 3(b) gives
Tc � 0:8 K. The slope and the intercept of the master
curves give E0=kB � 47 K and �0H0

n � 6:95 T.
Several points should be mentioned: (i) Eq. (6) is not

valid for fields which are close toH � 0 because the model
only takes into account the nucleation from the metastable
to the stable state. However, close to H � 0, transitions
between both states are possible leading to a rounding of
the master curve at small fields; (ii) field dependence of the
energy barrier can be obtained directly using [35] and is
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plotted in Fig. 4. The remaining energy barrier for the
tunnel process at 0.04 K is �20 K for 0:001 T=s; (iii) in
case of a distribution of nucleation barriers, different parts
of the distribution can be probed by applying the method at
different M values; (iv) this method is insensitive to small
intermolecular interactions when Hn is much larger than
the typical interaction field; and (v) the method can be
generalized for 2D and 3D networks of spins.

In conclusion, the presented low-temperature studies of
the field driven magnetization reversal of the Mn2Ni SCM
suggest for the low-temperature region that the magneti-
zation reversal starts by a quantum nucleation of a domain
wall followed by domain wall propagation and reversal of
the magnetization. Further studies will concern the appli-
cation of transverse fields which should enhance the quan-
tum nucleation rate.
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[29] L. Néel, C R (Dokl.) Acad Sci URSS 224, 1550 (1947).
[30] E. C. Stoner and E. P. Wohlfarth, Philos. Trans. London

Ser. A 240, 599 (1948).
[31] J. Kurkijärvi, Phys. Rev. B 6, 832 (1972).
[32] A. Garg, Phys. Rev. B 51, 15 592 (1995).
[33] W. Wernsdorfer et al., Phys. Rev. Lett. 78, 1791 (1997);

79, 4014 (1997).
[34] W. Wernsdorfer et al., cond-mat/0509193 [Phys. Rev. B

(to be published)].
[35] The probability density of reversal of a stochastic process

is �dP=dt � P=� and the maximum of the probabil-
ity density can be derived from d2P=dt2 � P�1�
d�=dt�=�2 � 0. This gives d�=dt � �1. The application
to Eq. (3) leads to �E�H� � kBT ln�kBT=��0

dE
dH

dH
dt ��.

Using Eqs. (4) we find Eq. (6).
[36] J. Tejada, R. F. Ziolo, and X. X. Zhang, Chem. Mater. 8,

1784 (1996).
3-4


