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Multiquanta Vortex Entry and Vortex-Antivortex Pattern Expansion
in a Superconducting Microsquare with a Magnetic Dot
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We investigate the nucleation of superconductivity in a microsquare with a magnetic dot on top. The
cusplike behavior of the calculated normal-superconducting phase boundaries, T.(H), shows a transition
between short-period to long-period oscillations when going from positive to negative applied fields, H.
Vorticity changes by more than 1, indicating multiquanta vortex entries, have been detected along this
asymmetric T.(H) boundary. The dot also expands dramatically the symmetry-consistent vortex-
antivortex patterns, thus facilitating their experimental observation.
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The intrinsic quantum nature of superconductivity
makes superconductors with dimensions of the order of
£(0), the Ginzburg-Landau (GL) coherence length, par-
ticularly sensitive to confinement effects. In the past years,
significant advances in different nanofabrication tech-
niques have promoted the systematic study of the proper-
ties of micro- and nanosuperconductors [1]. This research
has demonstrated that the topology of the sample can be
used to enhance considerably the superconducting critical
parameters, thus opening new perspectives for the potential
applications of superconductivity. Moreover, nanostructur-
ing also strongly affects the vortex matter in these super-
conductors. For instance, in cylindrical geometries, the
superconductivity nucleates in the form of a giant vortex
in the center [2], while symmetry-consistent vortex-
antivortex patterns may be spontaneously created in both
triangles [3] and squares [4]. This interest in the confine-
ment effects has been recently extended to hybrid super-
conductor/ferromagnetic (SF) nanosystems [5,6]. In the
case of individual nanostructures, these studies have been
focused on a cylindrical symmetry of the superconductor,
but they have already revealed new physical phenomena
arising from the interaction between superconductivity and
magnetism at this submicrometer scale. A good example is
the profound influence that a magnetic dot may have on the
onset of superconductivity and vortex states in loops and
disks [5,6].

In this Letter, we investigate the nucleation of super-
conductivity in a square with a cylindrical magnetic dot on
top. The existing analytic procedure to solve the linearized
Ginzburg-Landau equation (LGLE) in regular polygons [7]
has been adapted to include the contribution of the dot to
the total magnetic field, allowing us to identify new quan-
tum effects in the onset of superconductivity arising from
the interplay between the finite rotational symmetry of the
square and the inhomogeneous field of the dot. These
effects, which include vorticity changes by more than 1
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associated with multiquanta vortex entries in the sample
and an expansion of the symmetry-consistent vortex-
antivortex patterns, are well beyond those expected for a
cylindrical geometry of the superconductor [5,6,8].

The most adequate tool to study the nucleation of super-
conductivity is the LGLE given by [9]
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Equation (1) is analogous to the Schrodinger equation [10].
So, as the latter, it will preserve in the solutions the
symmetry imposed by the boundary conditions, which in

the case of a superconductor-vacuum interface can be
written as [9]
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In Egs. (1) and (2), A is the vector potential, ¢ is the
magnetic flux quantum, ¢ is the complex superconducting
order parameter, n holds for the normal component to the
sample’s boundary, and &(T) = £(0)(1 — T/T,)~"/2.

To overcome the difficulties in solving the LGLE arising
from the explicit presence of A in Eq. (2), it has been
proposed to apply a vector potential gauge transformation
for regular polygons that, in the case of a homogeneous
external field, gives A, = 0 at the sample’s boundary
[3,4,7]. Equation (2) is then transformed into V|, = 0,
and the LGLE may be solved by using an analytic basis set,
with corresponding solutions classified according to the
irreducible representations (irreps) of the symmetry group
of the problem. In a square, with C, rotational symmetry,
these irreps are denoted as A, B, E+ , and E— , and they
correspond to solutions with, respectively, no vortex (vor-
ticity 0), a giant vortex (vorticity +2), a vortex (vorticity
+1), and an antivortex (vorticity —1) in the center of the
sample that will be surrounded by a number of vortices
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(multiple of 4) that depends on the applied magnetic field
H [4]. The calculated vortex patterns are stable close to the
phase boundary, but, deeper in the superconducting state,
the nonlinear term in the GL equation becomes important
and causes symmetry breaking transitions [11].

To study the nucleation of superconductivity in a square
with a magnetic dot on top, we have applied the procedure
described above to the vector potential resulting from the
contributions of the homogeneous external field and the
stray field of the dot, this last obtained from magnetostatic
calculations. Assuming that the dot is magnetized parallel
to the z direction, in cylindrical coordinates such a vector
potential reads as [12]
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where A, = A, = 0 and k> = 4Rr/[(R + r)* + (z — z2)*]
is a dimensionless variable, the z dependence of which can
be used to account for the presence of a substrate between
the dot and the sample to avoid proximity effects. Also in
the above equation, R, M, and [ stand for, respectively,
the radius, magnetization, and height of the dot, while K
and E are, respectively, elliptic integrals of the first and the
second kind. Figure 1 shows, together with a schematic
drawing of the superconducting square with the magnetic
dot on top, the field profile that was obtained from Eq. (3)
by using My, = 18¢g, R = 0.4a, [ = 0.033q, and z =
—0.0025a (here a is the square’s length), parameters that
are comparable with those of dots previously used in ex-
periments [6,8]. The details of the gauge transformation of
Eq. (3) can be found in Ref. [13].

The magnetic field dependence of the energy of the
lowest Landau level corresponding to each irrep in pres-
ence of the magnetic dot defined in Fig. 1 is given in
Fig. 2(a), together with the results for the no-dot case
[Fig. 2(b)]. In order to obtain sample-independent curves,
the solutions of Eq. (1) have been multiplied by the
sample’s surface S, and the magnetic field is presented in
units of ¢/, where ¢ = HS is the magnetic flux in the
sample. These lowest Landau levels of each irrep define
the phase boundaries shown in the insets which, in the no-
dot case, are clearly symmetric with respect to the origin
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FIG. 1. Calculated field profile of a magnetic dot with My, =
18¢y, R = 0.4a, [ = 0.033a, and z = —0.0025a (here a is the
sample’s length), together with a schematic drawing of the
superconducting square with the magnetic dot on top.
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[4,13]. This behavior arises from a well-defined se-
quence of crossings between irreps, A (black line) — E+
(green line) — B (red line) — E— (blue line) — A ...,
each of them leading to an increase of the total vorticity of
the sample, L (that defines the total flux trapped in the
square through L), by 1 [4,13]. However, Fig. 2(a)
clearly illustrates that the dot strongly affects this oscillat-
ing behavior of the phase boundary. For instance, the
§/&2(T) curves are asymmetric with respect to the polarity
of the field, giving rise to a maximum critical temperature
at, approximately, ¢ = —12.5¢,. This fact clearly indi-
cates the presence of the compensation effect between the
stray field of the dot and the applied magnetic field already
observed in loops and disks [6], which, as shown by
Fig. 2(a), in the square also manifests itself in a long-period
oscillation regime between —38.7<¢/dy=<—7.8. In-
stead, for positive fields the short-period oscillations char-
acteristic of the no-dot case are progressively recovered.
The magnetic dot may also energetically favor one or
more irreps with respect to the others, thus leading to
changes in the total vorticity of the sample by more than
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FIG. 2 (color online). (a) Magnetic field dependence of the
energy of the lowest Landau level corresponding to each irrep in
presence of the magnetic dot presented in Fig. 1, together with
(b) the results with no dot. The intersections between these
Landau levels determine the phase boundaries shown in the
insets. Note the dramatic change in the cusplike behavior of
these S/&*(T) curves, from long-period oscillations between
—38.7 < ¢/ ¢y = —7.8 to short-period oscillations for positive
fields. The zoom in (a) illustrates the presence in the phase
boundary of transitions between vortex patterns where the vor-
ticity changes by more than 1. X- and Y-axis labels in the insets
are the same as in the main figures.
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1 (multiquanta transitions) due to the disappearance of
transitions between irreps present in the no-dot case. This
is already illustrated by the zoom of the §/&%(T) curves
shown in Fig. 2(a). In this region bounded by —6 =<
¢/Py =< 6, irreps E+ and E— are energetically favored
with respect to irreps A and B, and, as a consequence,
changes in L by +2 associated with the simultaneous entry
of two vortices in the sample can be observed at ¢ =
—5.1¢g, ¢ =~ —4¢, and ¢ = 2.6¢p,. However, the pres-
ence of multiquanta transitions in the onset of supercon-
ductivity can be better observed in Fig. 3, where we present
the evolution of the total vorticity of the sample along the
phase boundary for four different magnetizations of the
dot, namely, My, =0 (no dot), My, = 6¢y, Myo =
12¢, and M4, = 18¢,. In the no-dot case, |L| shows an
almost linear behavior, changing by 1 through field inter-
vals that progressively tend to ¢, when ¢ increases [4].
However, this field dependence dramatically changes when
M 4 increases. First, as a consequence of the compensation
between the external field and the stray field of the dot, the
¢ values at which |L| = 0 is observed are shifted to
negative fields. In addition, also for negative fields, the
vorticity exhibits an oscillating behavior with changes in L
by more than 1, which indicates the simultaneous entrance
of several vortices into the sample. For instance, at My, =
18¢ (triangles) and apart from those multiquanta transi-
tions already shown in Fig. 2(a), it is now possible to
observe variations in the vorticity by +4 from —4 to 0
(along irrep A) and from —14 to —10 (along irrep B), by
+5 from —10 to —5 (with a change between irreps B an
E—), and by +8 from —27 to —19 (along irrep E+). Note
that this last big jump in the vorticity appears, approxi-
mately, at the same field values at which S/&%(T) curves in
Fig. 2(a) enter the long-period oscillations regime.

To illustrate that the origin of the effects on the flux
quantization in the square observed in Fig. 3 is the com-
pensation of the applied magnetic field by the stray field of
the dot, in Fig. 4 we present the change in the spatial
distribution of the squared amplitude of the order pa-
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FIG. 3. Magnetic field dependence of the total vorticity of the
sample at the normal-superconducting phase boundary for four
different magnetizations of the dot. When My, increases, |L|
shows an oscillating behavior for negative ¢ values with vor-
ticity changes by more than 1.

rameter (|¢/|?) at the vorticity transitions observed for
¢ = —38.7¢, [Figs. 4(a) and 4(b)] and ¢ = —7.8¢,
[Figs. 4(c) and 4(d)], the magnetic fields that limit the
long-period oscillations regime in Fig. 2(a). As can be
seen, the vorticity transition by +8 that occurs at ¢ =
—38.7¢ almost coincides (within an interval of, approxi-
mately, 0.5¢,) with a profound change in the topology of
the order parameter distribution in the square, with the
highest values of ||? (red regions) concentrated in the
corners for ¢ < —38.7 ¢, (analogously to the no-dot case)
but with a ringlike structure when ¢ > —38.7¢,. This |i/|?
distribution, clearly related to a compensation of the ex-
ternal field by the stray field of the dot, is preserved when
the field increases up to ¢ = —7.8¢,. Then |¢|? is again
higher in the corners, and the well-defined sequence of
transitions between irreps is progressively recovered [see
Fig. 2(a)]. We have also detected that most of the multi-
quanta transitions observed in Fig. 3 between —38.7 <
&/d, < —7.8 have the common feature of involving the
simultaneous penetration of one or more antivortices (we
take as a reference for the vortex-antivortex definition the
magnetic moment of the dot) in each of the corners of the
square, where there is no field compensation. These results
illustrate the importance of the interplay between the finite
rotational symmetry of the square and the inhomogeneous
field of the dot, which may allow topological changes in

a) L =-27, irrep E+ b)
-39.3 <0/, < -38.7

L=-19,irrep E+
-38.7< 0/, <-36.6

C) L=0, Irrep A
-13 5 0/9,<-7.8

L=1,irrep E+
-1.8<0/0,<-5.3

d)
FIG. 4 (color online). Change in the ||> distribution at the
vorticity transitions observed for ¢ = —38.7¢, [(a) and (b)] and
¢ = —T7.8¢¢ [(c) and (d)], the magnetic fields that limit the
long-period oscillations regime in Fig. 2(a). These transitions
coincide with a change in the topology of the vortex patterns that
may favor the simultaneous nucleation of one or more antivor-
tices in each one of the corners of the sample.
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a) R=04a,L=3,Irrep E-
5.25< 0/, -3.5

b) No Dot, L =3, Trrep E-
55 ¢/, 6.3

FIG. 5 (color online). A comparison between the vortex-
antivortex patterns that can be observed for L =3 (a) with
and (b) without the magnetic dot. As can be seen, the vortex
pattern rotates 45° and expands dramatically in the presence of
the magnetic dot.

the ||* distribution favoring the nucleation of more than
one single vortex along the phase boundary. Similar results
have been found for a smaller radius of the dot by using
larger values of M.

Figure 4 also illustrates that the spontaneous formation
of symmetry-consistent vortex-antivortex pairs at the
phase boundary in regular polygons is preserved in the
presence of a magnetic dot, since the vortex patterns in
4(a) and 4(b) are formed by one vortex in the center
surrounded by 28 and 20 antivortices, respectively. In
addition, when compared with the |¢|? distributions pre-
viously obtained in the no-dot case [3,4], Figs. 4(a) and
4(b) also clearly demonstrate that the dot can be used to
enlarge these vortex-antivortex patterns, thus facilitating
their experimental observation with local vortex-imaging
techniques. To further illustrate these results, in Fig. 5 we
present a comparison between the order parameter distri-
butions obtained for L = 3 with 5(a) and without 5(b) the
magnetic dot. Both vortex patterns are formed by an anti-
vortex surrounded by four vortices that, as may be seen,
rotate 45° and expand dramatically in the presence of the
magnetic dot. This effect can be attributed to the singular
behavior of the stray field at the edges of the dot, with both
positive and negative large peaks (see Fig. 1) that seem to
attract vortices and antivortices.

In conclusion, the interplay between superconductivity
and ferromagnetism at submicron scales can give rise to
novel quantum effects in the onset of superconductivity of
mesoscopic regular polygons with magnetic dots. These
effects include multiquanta transitions between vortex pat-
terns and the formation of larger vortex-antivortex patterns
than in the no-dot case. From the point of view of the

applications, these results open new possibilities to ma-
nipulate the flux quantization in superconductor micro-
structures. Other fundamental aspects of the confinement
effects on the superconducting condensate in these hybrid
SF nanostructures, such as size and temperature depen-
dence of their properties, deserve further analysis.
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